
                                       AD_________________ 
 
 
Award Number:  W81XWH-04-1-0475 
 
 
 
TITLE:  Development of a Computer-Aided Diagnosis System for Early Detection of 
Masses Using Retrospectively Detected Cancers on Prior Mammograms 
 
 
 
PRINCIPAL INVESTIGATOR:  Jun Wei, Ph.D. 
 
 
                
CONTRACTING ORGANIZATION:  University of Michigan  
                                                          Ann Arbor, MI  48109-1274 
    
 
REPORT DATE:  June 2007  
 
 
TYPE OF REPORT:  Annual  
 
 
PREPARED FOR:  U.S. Army Medical Research and Materiel Command 
                               Fort Detrick, Maryland  21702-5012 
                 
 
DISTRIBUTION STATEMENT: Approved for Public Release;  
                                                  Distribution Unlimited 
 
 
The views, opinions and/or findings contained in this report are those of the author(s) and 
should not be construed as an official Department of the Army position, policy or decision 
unless so designated by other documentation. 



 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY)
01-06-2007  

2. REPORT TYPE
Annual  

3. DATES COVERED (From - To)
1 Jun 2006 – 31 May 2007 

4. TITLE AND SUBTITLE 
 

5a. CONTRACT NUMBER 
 

Development of a Computer-Aided Diagnosis System for Early Detection of Masses 
Using Retrospectively Detected Cancers on Prior Mammograms  

5b. GRANT NUMBER 
W81XWH-04-1-0475 

 5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 
 

5d. PROJECT NUMBER 
 

Jun Wei, Ph.D. 5e. TASK NUMBER 
 

E-Mail:  jvwei@umich.edu  
 

5f. WORK UNIT NUMBER
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 

8. PERFORMING ORGANIZATION REPORT   
    NUMBER

University of Michigan                                                             
Ann Arbor, MI  48109-1274

 
 
 
 

 
 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
U.S. Army Medical Research and Materiel Command   

Fort Detrick, Maryland  21702-5012   
 11. SPONSOR/MONITOR’S REPORT 
        NUMBER(S)
   
12. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for Public Release; Distribution Unlimited  
 
 
 

13. SUPPLEMENTARY NOTES – Original contains colored plates: ALL DTIC reproductions will be in black and white. 
  

14. ABSTRACT  
The goal of this project is to develop a computer-aided diagnosis (CAD) system for mass detection using advanced computer vision techniques that will be 
trained with retrospectively detected cancers on prior mammograms. The new CAD system will be combined with our existing CAD system. When fully 
developed, the new dual CAD system should increase the sensitivity of detecting cancers at the early stage without compromising the sensitivity for other 
cancers. 
During this project year, we have performed the following tasks: (1) continue to collect the data sets of digitized film mammograms for testing our CAD 
system, (2) investigation of a bilateral approach to reduce the false positives (FPs) on single CAD system, (3) develop image processing techniques for 
improvement of mass detection on prior mammograms, and (4) continue to develop a two-view information fusion method to improve the performance of 
single CAD system. 
In summary, we have investigated a number of areas in CAD of mammographic masses and evaluated the new techniques for mass detection on 
mammograms. We have made progress in three of the tasks proposed in the project. We have found that our new computer-vision techniques can 
improve the performance of the CAD systems. We will continue the development of the CAD system in the coming years. 
 

15. SUBJECT TERMS  
Breast cancer, mammography, CAD 
 

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT

18. NUMBER 
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
USAMRMC  

a. REPORT 
U 

b. ABSTRACT
U 

c. THIS PAGE
U 

 
UU 

 
85 

19b. TELEPHONE NUMBER (include area 
code)
 

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

mailto:jvwei@umich.edu


 

 
 Table of Contents 
 

Introduction......................................................................................................................... 4 

Body.................................................................................................................................... 5 
 

(A) Collection of a database of digitized screen-film mammograms (DFM) with multiple 
examinations 

 
(B) Investigation of a bilateral approach to reduce false positives (FPs) on single CAD 

system  
 

(C) Development of image processing techniques for improvement of mass detection on 
prior mammograms 

 
(D) Continue to develop a two-view information fusion method 

 

Key Research Accomplishments ...................................................................................... 17 

Reportable Outcomes........................................................................................................ 17 

Conclusions....................................................................................................................... 18 

References......................................................................................................................... 19 

Appendix........................................................................................................................... 21 
 



(4) Introduction 
 
Recent clinical studies have proved that computer-aided diagnosis (CAD) systems are 

helpful for improving cancer detection by radiologists on mammograms1-6.  To evaluate the  
effectiveness of a CAD system in detecting cancers that are likely to be missed by radiologists, 
one way is to study its accuracy in detecting missed cancers on prior mammograms (the 
mammograms in previous exams on which the cancer can be seen retrospectively).  Several 
studies have demonstrated that CAD systems have potential ability to detect missed cancers on 
prior mammograms7-11.  However, the performance of a CAD system on prior mammograms is 
generally much lower than their performance on the current mammograms (the mammogram on 
which cancer is detected). Recently, one study investigated the performance change between 
prior mammograms and current mammograms when using the CAD system trained by current 
mammograms and another by prior mammograms.  It was concluded that CAD schemes trained 
with the current mammograms do not perform optimally in detecting masses depicted on prior 
images and vice versa.   

 
The goal of this proposed project is to develop a CAD system using advanced computer 

vision techniques to detect masses using retrospectively detected cancers on prior mammograms 
and incorporate the developed CAD system into our current CAD system.  We hypothesize that a 
dual CAD system, which combines a system trained with subtle lesions retrospectively seen on 
prior mammograms and a system trained with cancers detected on current mammograms, should 
increase the sensitivity of detecting cancers at the early stage without compromising its ability to 
detect less subtle cancers.  To accomplish this goal, we will (1) collect a large database of 
masses on digitized prior and current film mammograms (DFMs) for training and testing the 
CAD system, (2) develop single-view computer vision techniques for mass detection and 
classification in prior DFMs, (3) reduce false positives (FPs) by correlation of image information 
from two-view mammograms, (4) combine the new CAD system with our current CAD system 
without an increase in overall FPs, and (5) perform ROC study to evaluate the effects of CAD on 
radiologists’ accuracy in detecting subtle cancers. Although we do not plan to develop such a 
system for digital mammograms because there will not be enough prior digital mammograms 
with cancers available for the development, the general methodology developed in this study can 
be adapted to CAD systems for digital mammograms in the future.   

 
At the conclusion of this project, we expect that a fully automated CAD system will be 

developed which can be used for detection of masses on DFMs.  The general methodology 
developed in this study may also be adapted to develop similar software for other CAD systems.  
The significance of this project is that it will develop a CAD system which can further improve 
radiologists’ accuracy in detecting breast cancers at an early stage.  Since early detection and 
treatment can reduce breast cancer mortality rate, the CAD system will be useful for increasing 
the effectiveness of mammographic screening.   
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(5) Body 
 
 The current year (6/1/06-5/31/07) is the third year of the project.  We have requested and 
obtained approval for a no cost time extension of the project so that this is a regular annual 
progress report instead of a final report.  We will describe in the following details of the studies 
that we performed this year. 
 
(A) Collection of a Database of Digitized Screen-film Mammograms (DFM) with 

Multiple Examinations 
 

In this project year, we continue to collect a data set of digitized screen-film 
mammogram from patient files in the Department of Radiology at the University of Michigan 
with Institutional Review Board (IRB) approval.  Two independent data sets of mammograms 
were collected for this study; one contained mammograms with masses and the other contained 
normal mammograms.  The normal data set was used to estimate the false positive (FP) marker 
rates during testing12-14.  To date, the mass data set contained 220 cases with 220 masses. 190 
cases included the current mammograms on which the mass was detected by radiologists, and the 
prior mammograms obtained from previous exams.  30 cases only had the current mammograms. 
 In total, 886 mammograms including 440 current mammograms and 446 prior mammograms 
were collected.  The true location of each mass was identified by an experienced Mammography 
Quality Standards Act (MQSA) radiologist.  The radiologist also measured the mass size and 
provided descriptions of the mass margin, shape, conspicuity, and breast density. 

 
(B) Investigation of a Bilateral Approach to Reduce the FPs on Single CAD System 

 
In an effort to improve the performance of our single CAD system, the first study of this 

year is to investigate an FP reduction method based on analysis of bilateral mammograms for 
computerized mass detection systems.  Our recent paper has been accepted for publication on the 
Medical Physics Journal15.  The study is summarized in the following. 
 

1. Data Set 
 
A database of mammograms was collected from patient files at the Department of Radiology 

with Institutional Review Board (IRB) approval. Two data sets are used: a mass data set 
containing bilateral digitized mammograms with malignant or benign masses and a no-mass data 
set containing bilateral digitized mammograms without masses, verified by an experienced 
radiologist. All cases had four mammographic views, the CC view and the MLO view 
mammogram for both breasts. The mass set contained 276 cases so that 552 bilateral pairs were 
available. The no-mass data set contained 65 cases so that 130 bilateral pairs were available. 
Fifty cases of the no-mass set were consecutive normal screening cases from our patient files 
with an additional 15 cases visually judged by radiologists to be dense breasts. The mass data 
set was used to estimate the detection sensitivity and the no-mass data set was used for 
estimating the FP rate. In the mass data set, each patient had a biopsy-proven mass in one of the 
breasts, resulting in a total of 276 masses, 166 of which were benign and 110 malignant. An 
MQSA radiologist identified the location of the masses, measured the mass sizes as the longest 
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dimension seen on the two-view mammograms, provided descriptors of the mass shapes and 
mass margins, and also provided an estimate of the breast density in term of BI-RADS category.  

 
2. Methods 

 
In order to improve the performance of our CAD system, we developed a new bilateral CAD 

system that combines the unilateral features with the bilateral features to reduce FPs. Our 
bilateral CAD system consists of five steps: (1) mass candidate (MC) detection, (2) 
corresponding ROIs (CR) extraction, (3) feature analysis, (4) feature combination, and (5) 
bilateral CAD system generation. Figure 1 shows the block diagram for our bilateral CAD 
system. 

 
Figure 1.  The block diagram of the bilateral CAD system for FP reduction on mammograms. 

Mammogram 

Detect Mass Candidates 
Obtain Corresponding ROIs by 

Regional Registration 

Feature Extraction Feature Extraction 

Generate Unilateral Features Generate Bilateral Features 

Combine Unilateral Features 
and Bilateral Score Bilateral Score 

Bilateral CAD System Output 

 

The mass candidates on the individual mammograms are detected by the prescreening step of 
our unilateral CAD system16,17.  A gradient field analysis is applied to the mammogram and the 
locations of high gradient convergence are identified as mass candidates. An ROI of 256× 256 
pixels is then centered at each location of high gradient convergence.  For each candidate, 
regional registration technique16-19 is used to define an ROI that is “symmetrical” to the object 
location on the contralateral mammogram. An ROI of 256× 256 pixels is then centered at the 
triangle as the contralateral ROI.  For the feature analysis, SGLD texture features and 
morphological features are extracted from both the ROIs containing the detected mass candidate 
and its contralateral ROI. Let  and  be the  feature of the  mass candidate 
and the  feature of the  corresponding ROI, respectively. The  bilateral feature (BF) is 
derived from the   unilateral feature by the expression below.  

],[ jiMC ],[ jiCR thi thj
thi thj thi
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Using the bilateral features as the input predictor variables, a linear discriminant analysis (LDA) 
classifier is trained to merge the features into a bilateral score.  The LDA is trained with a leave-
one-case-out resampling scheme for stepwise feature selection within the training set.  The 
bilateral score incorporates the “symmetry” information to differentiate symmetric (likely FPs) 
and asymmetric (likely masses) tissues on the left and right breasts.  To merge the information 
from the unilateral and the bilateral features in our CAD system, a new feature space is formed 
by combining the unilateral features and the bilateral score of the mass candidate. Finally, the 
bilateral CAD system output score is obtained by a second LDA classifier that is trained to 
differentiate the true mass and FPs in the new feature space, again using the training set.  

 
3. Results 

 

Number of False Positives per Image
0.0 0.5 1.0 1.5 2.0

Tr
ue

 P
os

iti
ve

 F
ra

ct
io

n

0.0

0.2

0.4

0.6

0.8

1.0

Unilateral CAD
Bilateral   CAD

 Number of False Positives per Case
0.0 0.5 1.0 1.5 2.0

Tr
ue

 P
os

iti
ve

 F
ra

ct
io

n

0.0

0.2

0.4

0.6

0.8

1.0

Unilateral CAD
Bilateral   CAD

 
(a) (b) 

Figure 2.  (a) Image-based and (b) case-based average test FROC curves from the unilateral and 
the bilateral CAD systems. The FP rates were estimated from detection on mammograms in the 
test subsets with masses. 

 

Figure 2 shows the average free response receiver operating characteristic (FROC) curves 
for the test sets using the unilateral and bilateral CAD systems. The the corresponding trained 
LDA classifiers have been used for FP reduction and the FP rates were estimated from the test 
subsets with masses.  The bilateral CAD system achieved a case-based sensitivity of 70%, 80%, 
and 85% at average FP rates of 0.53, 0.87, and 1.15 FPs/image, respectively, on the test data set. 
 In comparison to the average FP rates for the unilateral CAD system of 0.70, 1.11, and 1.46 
FPs/image, respectively, at the corresponding sensitivities, the FP rates were reduced by 24%, 
21%, and 21% with the bilateral symmetry information. Figure 3 shows the average test FROC 
curves for the unilateral and bilateral CAD systems with the FP rates estimated on the set of no-
mass mammograms.  Figure 4 compares the average test FROC curves for the unilateral and 
bilateral CAD systems on malignant cases only.  Figure 5 shows the average test FROC curves 
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for the unilateral and bilateral CAD systems with the sensitivities estimated on malignant cases 
only and the FP rates estimated on the set of no-mass mammograms. We employed the jackknife 
FROC (JAFROC) analysis23,24 to evaluate the difference in the FROC curves obtained from the 
unilateral CAD system and the bilateral CAD system.  The difference between the figures of 
merit (FOMs) for the unilateral and the bilateral CAD systems was statistically significant 
(p<0.05). 
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Figure 3.  (a) Image-based and (b) case-based average test FROC curves from the unilateral 
and the bilateral CAD systems. The FP rates were estimated from detection on 
mammograms in the no-mass data set. 

 

 

 
4. Discussion and Conclusion 

 
Symmetry between breast structures in bilateral pairs of mammograms is an important 

feature used by radiologists for mass detection or FP reduction.  Similar structures that appear 
in both the right and left mammograms are more likely to be normal tissue than abnormal 
lesions. Our bilateral analysis translates this human intelligence to computer vision that can 
recognize the symmetry of breast tissue on bilateral mammograms to improve detection 
accuracy.  To our knowledge, this FP reduction strategy for mass detection has not been 
reported previously. Our results demonstrate that the bilateral features can be utilized to 
differentiate the similarity and dissimilarity between tissues at corresponding locations in the 
bilateral views, and can be useful for improving the performance of a unilateral CAD system by 
further reducing the FPs.  
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(a) (b) 

Figure 4.  (a) Image-based and (b) case-based average test FROC curves from the unilateral and 
bilateral CAD systems for detection on cases with malignant masses only. The FP rates were 
estimated from the test subset with masses. 
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(a) (b) 

Figure 5.  (a) Image-based and (b) case-based average test FROC curves from the unilateral and 
bilateral CAD systems for detection on cases with malignant masses only. The FP rates were 
estimated from the no-mass data set. 
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(C) Development of Image Processing Techniques for Improvement of Mass Detection 
on Prior Mammograms 

 
The second study of this year is to develop image processing techniques for improvement 

of CAD on prior mammograms.  Our results were presented at the SPIE meeting in 200720.  Also, 
these techniques have been applied to mass detection on full field digital mammograms (FFDM) 
and screening film mammograms (SFM). We found that they were useful for improving the 
accuracy of mass detection on current mammograms as well.  A journal article with the results 
had been published in Academic radiology 200721.  The study is summarized in the following. 

 
1. Data Set  

 

  
(a) mass sizes (b) mass visibility 

 

Figure 6.   Histogram of the sizes and visibility for 299 masses on current mammograms and 301 
masses on priors in our data set.  The size of the masses in this data set ranged from 3 to 42 mm. 
The visibility is evaluated on a 10-point rating scale with 1 representing the most visible masses 
and 10 the most difficult case relative to the cases seen in their clinical practice.  The masses that 
were not visible were plotted in the column labeled as “INV”. 

 
 
All mammograms in this study were collected from patient files in the Department of 

Radiology at the University of Michigan with Institutional Review Board (IRB) approval.  The 
mammograms were digitized with a LUMISYS 85 laser film scanner with a pixel size of 
50µm×50µm and 4096 gray levels.  The full resolution mammograms were first smoothed with a 
2×2 box filter and subsampled by a factor of 2, resulting in images with a pixel size of 
100µm×100µm.  These images were used for input to our CAD system.  The data set we used in 
this study contained 159 cases.  Each exam had two mammographic views, resulting in a total of 
318 current mammograms and 402 prior mammograms.  Forty-two patients had two years of 
prior examinations. All mammograms were obtained before biopsy.  There were 159 biopsy-
proven masses in this data set.  Figures 6 showed the histograms of mass sizes and visibility, 
respectively, for the comparison of current and prior masses.  The size of a mass was estimated 
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as its longest diameter seen on the mammograms.  The visibility of the masses was rated by an 
experienced radiologist on a 10-point scale with 1 representing the most visible masses and 10 
the most difficult case relative to the cases seen in clinical practice.  The mass size ranged from 3 
to 42 mm (mean size: 14.3±8.6 mm on current mammograms and 10.9±6.6 mm on prior 
mammograms) and the visibility ratings extended over the entire range.  For the current 
mammograms, 140 of the masses were visible on both views and 19 visible on only one view.  
For the prior mammograms, 100 masses were visible on both views and 101 visible only on one 
view. Therefore, there were 299 visible and 19 invisible masses on current mammograms and 
301 visible and 101 invisible masses on prior mammograms if the masses were counted 
independently by mammographic view. 
 

2. Methods 
 
Our CAD system consists of five processing steps: 1) pre-screening of mass candidates, 

2) identification of suspicious objects, 3) extraction of morphological and texture features, and 4) 
classification between the normal and the abnormal regions by using rule-based and LDA 
classifiers. 

For the pre-screening stage, we developed a new prescreening technique in which 
gradient field analysis was combined with Hessian analysis to identify mass candidates.  Both 
gradient field and Hessian analyses were designed to enhance approximately circular structures 
on mammograms and to suppress the objects with other shapes.  Gradient field analysis used the 
information of gradient field directions and Hessian analysis used the second derivatives by 
solving for the eigenvalues of the Hessian matrix.  After this enhancement filtering, the local 
maxima within the breast region were identified as the mass candidates on each mammogram.  
The suspicious structure in each identified location was initially extracted by a seed-based region 
growing method.  An active contour method was then used to further refine the initial 
segmentation.  Morphological, gray level histogram and run-length statistics (RLS) features were 
extracted from the original region of interest (ROI) and the orientation field of the ROI for 
reduction of FPs.   

The hold-out method was used for training and testing our CAD system.  We randomly 
separated the entire data set by case into two independent subsets, the training subset including 
78 cases with 156 current and 200 prior mammograms and the test subset including 81 cases 
with 162 current and 202 prior mammograms.  The training included selection of proper 
parameters and features for the classifier in the CAD system.  Once the training was completed, 
the parameters and features were fixed for testing.  The new system was trained by using prior 
mammograms in the training set only.  The performance of the new system was compared with 
that of the previous CAD system on the current and prior mammograms in the test set.   

During training, feature selection with stepwise LDA was employed to obtain the best 
feature subset and reduce the dimensionality of the feature space to design an effective classifier. 
 The detailed procedure has been described elsewhere17.  Briefly, at each step one feature was 
entered or removed from the feature pool by analyzing its effect on the selection criterion, which 
was chosen to be the Wilks' lambda in this study.  Since the appropriate threshold values for 
feature entry, feature elimination, and tolerance of feature correlation were unknown, we used an 
automated simplex optimization method to search for the best combination of thresholds in the 
parameter space.  The simplex algorithm used a leave-one-case-out resampling method within 
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the training subset to select features and estimate the weights for the LDA classifier.  To have a 
figure-of-merit to guide feature selection, the test discriminant scores from the left-out cases 
were analyzed using receiver operating characteristic (ROC) methodology.  The accuracy for 
classification of masses and FPs was evaluated as the area under the ROC curve, Az.  In this 
approach, feature selection was performed without the left-out case so that the test performance 
would be less optimistically biased.  However, the selected feature set in each leave-one-case-out 
cycle could be slightly different because every cycle had one training case different from the 
other cycles.  In order to obtain a single trained classifier to apply to the hold-out test subset, a 
final stepwise feature selection was performed with the best combination of thresholds, found in 
the simplex optimization procedure, on the entire training subset to obtain the final set of 
features and estimate the weights of the LDA.  Note that the entire process of feature selection 
and classifier weight estimation was performed within the training subset.  The LDA classifier 
with the selected feature set was then fixed and applied to the test subset. 

 
3. Results 
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Figure 7.  Image-based test FROC curves on 
prior mammograms. Old CAD: detection by 
the previous CAD system trained on both 
current and prior mammograms. New CAD: 
detection by the CAD system trained on prior 
mammograms. 

Figure 8.  Case-based test FROC curves on 
prior mammograms. Old CAD: detection by 
the previous CAD system trained on both 
current and prior mammograms. New CAD: 
detection by the CAD system trained on prior 
mammograms. 

 

Figures 7 and 8 showed the image-based and case-based FROC curves for detection of 
masses on prior mammograms, respectively.  The case-based sensitivities for detection of masses 
on the prior mammograms (typically subtle masses) in the test subset were 56%, and 35% at 1 
and 0.5 FPs/image by using the new CAD system in comparison to 48%, and 32% at the same 
FP rates by using the previous CAD system.  The improvement with the new system on prior 
mammograms was statistically significant (p = 0.036).  When the new system was applied to the 
detection of masses on the current mammograms (typically average masses) in the test subset, 
the case-based sensitivities were 77% and 70% at 1 and 0.5 FPs/image in comparison to 75% 
and 56% at the same FP rates by using the previous CAD system.  The difference in the two 
FROC curves for detection of average masses on current mammograms was not statistically 
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different (p = 0.184) by JAFROC analysis.  Image-based and case-based FROC curves for 
detection of masses on current mammograms were shown in Figures 9 and 10, respectively. 
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Figure 9.  Image-based test FROC curves on 
current mammograms. Old CAD: detection by 
the previous CAD system trained on both 
current and prior mammograms. New CAD: 
detection by the CAD system trained on prior 
mammograms. 

Figure 10.  Case-based test FROC curves on 
current mammograms. Old CAD: detection 
by the previous CAD system trained on both 
current and prior mammograms. New CAD: 
detection by the CAD system trained on prior 
mammograms. 

 
 

4. Discussion and Conclusion 
 
In this study, we improved the accuracy of a CAD system for detection of subtle masses 

on prior mammograms.  A new prescreening method was developed to improve the sensitivity of 
mass detection.  A new mass segmentation method that combined a seed-based region growing 
method with active contour method was also designed.  RLS features were extracted from the 
original ROIs and the newly derived orientation field of the ROIs for FPs reduction. Our CAD 
system can significantly improve the performance of mass detection on prior mammograms 
without a trade-off in the detection of masses on current mammograms.  It is expected that the 
new CAD system can increase the overall accuracy for detection of subtle early-stage breast 
cancers. 
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(D) Continuation of Development of a Two-view Information Fusion Method to 
Improve the Performance of Single CAD System 

The third study performed in this project year is to continue to develop a two-view 
information fusion method to improve the performance of our CAD system for mass detection.  
Our results were presented at the RSNA in Chicago22 in November of 2006.  We have made good 
progress on this part and are preparing a journal paper.  The study is summarized in the 
following. 
 

1. Data Set 
 
All mammograms in this study were collected from patient files in the Department of 

Radiology at the University of Michigan with Institutional Review Board (IRB) approval.  In 
this study, two data sets were collected: a mass set with biopsy-proven unilateral malignant or 
benign masses and a normal set containing bilateral mammograms.  The mass set contained 469 
cases with 469 biopsy proven masses, of which 190 were malignant and 279 benign.  Each case 
contained two mammographic views (CC view and MLO view or the lateral view).  The normal 
set was consisted of 50 consecutive normal screening cases from our patient files and an 
additional 15 cases visually judged by radiologists to be dense breasts.  Each normal case 
contained 4 mammographic views from bilateral breasts.  The normal data set was only used for 
estimating the FP rate during testing.  An experienced MQSA radiologist identified the locations 
of masses by examining all available information including the diagnostic mammograms and 
reports.  In these 469 mass cases, 19 masses (4%) can be seen only on one mammographic view. 

 

2. Methods 
 

In order to improve the overall performance of our CAD system for detection of masses, 
we developed a two-view fusion technique which combines the information from two 
mammographic views.  Our method in this study is based on two assumptions: (1) the 
corresponding true masses on two different mammographic views will exhibit higher similarity 
than the FPs detected by the CAD system, (2) the morphological and texture features of the same 
mass on different views will also show similar properties and mass pairs (TP-TP pairs) can be 
distinguished from false pairs (TP-FP, FP-TP, FP-FP pairs) in the combined feature space from 
two different mammographic views.  A schematic of our two-view system is shown in Figure 11. 

 
 

 14



 

Figure 11.  Schematic diagram of our two-view CAD system for mass detection on 
mammograms.  The system is developed for screening mammography in which all masses, 
regardless of malignant or benign, are considered positive.  

 

 
Figure 12.      Block diagram of the two-view information fusion for suspicious objects on CC 
and MLO views of the same breast. 

Mammogram

Singe CAD 
(5 objects per image)

Two-view 
information fusion

Single CAD scores 

Fusion scores 

Two-view system classifier 

5 objects 
on MLO view

5 objects 
on CC view

Region registration 
based on geometric information

LDA classifier Cross correlation 
(TP-TP vs other 

Fusion scores 
(for 10 objects on CC and MLO views)

between paired objects pairs) 

 15



 

The key process of our two-view CAD system is the information fusion step in which the 
potential similar suspicious objects on different mammographic views are paired together and a 
classifier merges the two-view information and provides a unique fusion score for each 
individual suspicious object.  For a deformable object like the breast under compression, the 
corresponding locations of an object in the two views cannot be determined exactly based on the 
two projection mammograms.  Our two-view information fusion scheme consists of four steps: 
(1) region registration by using geometric information, (2) similarity measure between paired 
objects, (3) classification of TP-TP pairs from other FP pairs, and (4) generalization of fusion 
score.  Figure 12 shows the block diagram for two-view information fusion for suspicious 
objects on CC and MLO views of the same breast.  The JAFROC method was used to compare 
the performance of our two-view CAD system with that of single CAD system statistically.  

 

3. Results 

 
We randomly separated the cases in our mass data set into two independent data sets: 238 

cases with 472 images and 231 cases with 462 images.  The training and testing were performed 
using the 2-fold cross validation method.  The detection performance of the CAD system was 
assessed by FROC analysis.  FP rate was estimated from the mammograms without masses.  
FROC curves were presented on a per-mammogram and a per-case basis.  To evaluate the 
overall test performance, an average test FROC curve was obtained as described above.  Figures 
13(a) and 13(b) show the comparison of the test performance of the single-view CAD system 
and the two-view CAD systems by using image-based and case-based average FROC curves, 
respectively.  The single-view CAD system achieved an FP rate of 2.3, 1.7, and 1.3 FPs/image at 
the case-based test sensitivities of 90%, 85% and 80%, respectively. With the two-view fusion 
system, the FP rates were reduced to 1.9, 1.4, and 1.1 FPs/image at the corresponding 
sensitivities, respectively. The improvement was found to be statistically significant (p<0.05) by 
the JAFROC method.   
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Figure 13.  (a) Image-based and (b) case-based average test FROC curves from the single-view 
and the two-view CAD systems. The FP rates were estimated from detection on mammograms in 
the no-mass data set. 
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4. Discussion and Conclusion 

 
In this study, a two-view information fusion method was developed to improve the 

performance of our CAD system for mass detection on mammograms. The two-view CAD 
system is different from case-based scoring, in which detection of the same mass in either the CC 
view or the MLO view will be counted as a true positive, in that the detected objects in the two 
views are correlated and analyzed for similarity and the likelihood score of a mass detected in 
both views may be enhanced compared with FPs.  Our results indicate that two-view fusion 
significantly improved the overall performance of the single-view CAD system. 

 
 

 (6)  Key Research Accomplishments 
 
• Continue to collect the data sets of digitized film mammograms with multiple examinations. 

(Task 1). 
 
• Investigation of a bilateral approach to reduce the FPs on single CAD system (Task 2). 
 
• Development of image processing techniques for improvement of mass detection on prior 

mammograms (Task 2). 

 
• Continue to develop a two-view information fusion method (Task 3). 
 
 
(7)       Reportable Outcomes 
 

As a result of the support by the USAMRMC BCRP grant, we have conducted studies to 
develop a computer-aided diagnosis system for early detection of masses using retrospectively 
detected cancers on prior mammograms.  We have presented the results of these investigations in 
this project year and a journal article which was accepted for publication last year had been 
published in this project year.  Also, we have one journal paper published in Academic 
Radiology and one journal paper accepted for publication in Medical Physics. 
 
Journal Articles: 
 
1. Wei J, Chan HP, Sahiner B, Hadjiiski LM, Helvie MA, Roubidoux MA, Zhou C, Ge J, 

"Dual system approach to computer-aided detection of breast masses on mammograms", 
Medical Physics, Vol. 33, No. 11, pp. 4157–4168, 2006. 

 
2. Wei J, Hadjiiski LM, Sahiner B, Chan HP, Ge J, Roubidoux MA, Helvie MA, Zhou C, 

Wu YT, Paramagul C, Zhang Y, “Computer Aided Detection Systems for Breast Masses: 
Comparison of Performances on Full-Field Digital Mammograms and Digitized Screen-
film Mammograms”,  Academic Radiology, Vol. 14, No. 6, pp. 659-669, 2007. 
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3. Wu YT, Wei J, Hadjiiski LM, Sahiner B, Zhou C, Ge J, Shi J, Zhang Y, Chan HP, 

“Bilateral analysis based false positive reduction for computer-aided mass detection”, 
Medical Physics (in press). 

 
Conference Proceeding: 
 
1. Wei J, Sahiner B, Chan HP, Hadjiiski LM, Roubidoux MA, Helvie MA, Ge J, Zhou C, 

and Wu YT, “Computer-aided detection of breast masses on prior mammograms”, Proc. 
SPIE, Vol. 6514, pp. 51-57, 2007. 

 
Conference Presentation: 
 
1. J. Wei, B. Sahiner, HP. Chan HP, M. A. Roubidoux, M. A. Helvie, YT. Wu, L. M. 

Hadjiiski, J. Ge, C. Zhou, “Computer-aided detection of breast masses on mammograms: 
Performance improvement using two-view information”, Presentation at the 92nd 
Scientific Assembly and Annual Meeting of the Radiological Society of North America, 
Chicago, IL. November 26-December 1, 2006. 

 
 
(8)  Conclusions 
 

During this project year, we first investigated an FP reduction method based on analysis 
of bilateral mammograms for computerized mass detection systems.  Our results demonstrate 
that the bilateral features can be utilized to differentiate the similarity and dissimilarity between 
tissues at corresponding locations in the bilateral views, and can be useful for improving the 
performance of a unilateral CAD system by further reducing the FPs.  

 
In a second study, we developed several image processing techniques for improvement of 

mass detection on prior mammograms. The new techniques can significantly improve the 
performance of mass detection on prior mammograms without a trade-off in the detection of 
masses on current mammograms.  It is expected that the improved CAD system can increase the 
overall accuracy for detection of subtle early-stage breast cancers. 

 
The third study performed in this project year is to continue to develop a two-view 

information fusion method to improve the performance of our CAD system for mass detection.  
The two-view CAD system is different from case-based scoring in that the detected objects in the 
two views are correlated and analyzed for similarity and the likelihood score of a mass detected 
in both views may be enhanced compared with FPs.  Our results indicate that two-view fusion 
can significantly improve the overall performance of the single-view CAD system.  

 
From the results of these studies, we found that our single CAD system can be improved 

by the new image processing techniques and the bilateral and two-view analyses. We have 
already shown in the previous annual progress reports that our proposed dual CAD system 
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approach is a very promising method to improve detection of subtle early breast cancers. In the 
coming project year, we plan to investigate the combination of the techniques developed in this 
project year with the dual CAD system approach.  We expect that the dual CAD system will be 
further improved when combined with the new techniques.  
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Dual system approach to computer-aided detection of breast masses
on mammograms
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In this study, our purpose was to improve the performance of our mass detection system by using
a new dual system approach which combines a computer-added detection �CAD� system optimized
with “average” masses with another CAD system optimized with “subtle” masses. The two single
CAD systems have similar image processing steps, which include prescreening, object segmenta-
tion, morphological and texture feature extraction, and false positive �FP� reduction by rule-based
and linear discriminant analysis �LDA� classifiers. A feed-forward backpropagation artificial neural
network was trained to merge the scores from the LDA classifiers in the two single CAD systems
and differentiate true masses from normal tissue. For an unknown test mammogram, the two single
CAD systems are applied to the image in parallel to detect suspicious objects. A total of three data
sets were used for training and testing the systems. The first data set of 230 current mammograms,
referred to as the average mass set, was collected from 115 patients. We also collected 264 mam-
mograms, referred to as the subtle mass set, which were one to two years prior to the current exam
from these patients. Both the average and the subtle mass sets were partitioned into two indepen-
dent data sets in a cross validation training and testing scheme. A third data set containing 65 cases
with 260 normal mammograms was used to estimate the FP marker rates during testing. When the
single CAD system trained on the average mass set was applied to the test set with average masses,
the FP marker rates were 2.2, 1.8, and 1.5 per image at the case-based sensitivities of 90%, 85%,
and 80%, respectively. With the dual CAD system, the FP marker rates were reduced to 1.2, 0.9,
and 0.7 per image, respectively, at the same case-based sensitivities. Statistically significant �p
�0.05� improvements on the free response receiver operating characteristic curves were observed
when the dual system and the single system were compared using the test sets with either average
masses or subtle masses. © 2006 American Association of Physicists in Medicine.
�DOI: 10.1118/1.2357838�

Key words: computer-aided detection �CAD�, mass detection, mammogram, dual system, artificial

neural network �ANN�
I. INTRODUCTION

Breast cancer is one of the leading causes of cancer mortality
among women.1 It has been reported that early diagnosis and
treatment can significantly improve the chance of survival
for patients with breast cancer.2–4 At present, the most suc-
cessful method for the early detection of breast cancer is
screening mammography.5 Various methods are being devel-
oped to improve the accuracy of breast cancer detection.
Double reading by radiologists can reduce the miss rate of
radiographic reading. However, double reading will increase
the cost of mammographic screening. An alternative method
is to use a trained computer-aided detection �CAD� system as
a second reader.6,7 Recent clinical studies have shown that
CAD systems are helpful for increasing radiologists’ accu-
racy in detecting breast cancers.8–13

A large volume of literature has been published in the
CAD area. CAD systems for mammography generally con-
sist of two subsystems: one is a mass detection system and
the other is a microcalcification detection system. Detection

of masses on mammograms is often more challenging than

4157 Med. Phys. 33 „11…, November 2006 0094-2405/2006/33„
detection of microcalcifications. The mass detection systems
to-date have employed a single-system approach using vari-
ous techniques for prescreening of mass candidates and clas-
sification of true and false positives.14–24 Our laboratory in-
corporated two-view mammographic information for
improved differentiation of true masses and false positives
and obtained promising preliminary results.22 However, de-
velopment of new methods to improve the performance of
mass detection systems remains an important area of CAD
research.

The CAD systems developed so far have mostly used
masses seen on current mammograms �i.e., the mammo-
grams on which the masses were detected by radiologists�
for training. An important purpose of a CAD system is that it
is used as a second reader to alert radiologists to subtle can-
cers that may be overlooked. To study the ability of a CAD
system in detecting subtle cancers that are likely to be
missed by radiologists, one way is to evaluate its accuracy in
detecting missed cancers on prior mammograms �i.e., the
mammograms in previous examinations on which the mass

or cancer can be seen retrospectively but was considered

415711…/4157/12/$23.00 © 2006 Am. Assoc. Phys. Med.
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negative or benign at the time of the examination�. Some
researchers have investigated the performance change of
CAD systems when using prior mammograms as input. In
our study of mass detection on prior mammograms,25 we
obtained a case-based sensitivity of 74% �20/27� of the ma-
lignant masses with 2.2 false positives �FPs� per image. te
Brake et al.26 reported that their CAD system has a case-
based sensitivity of 34% �22/65� of the cancers which have
the appearance of masses or stellate lesions in the prior ex-
aminations with 1 FP per image. A commercial system �R2
ImageChecker� also reported detection of 42% �72/172� of
the cancers in the prior years which were considered worthy
of call-back in retrospect by expert mammographers with
about 2 FP marks/case.27 Zheng et al.23 reported that their
CAD system trained with current mammograms could not
perform optimally in prior mammograms and vice versa;
whereas the same system trained with prior mammograms
can perform better on detecting the masses on prior mammo-
grams. Recently, an assessment study28 was conducted to
compare the performance of two commercial systems and
one research CAD system on current mammograms and
prior mammograms. The results showed that the true positive
�TP� fraction for CAD systems on prior mammograms of 39
breasts with malignant masses ranged from 15% to 26% with
0.28 to 0.41 FP marks/image. Although the detection perfor-
mance reported in the different studies vary, probably due to
the differences in the data set used, these studies indicate that
the sensitivities of current CAD systems in detecting subtle
masses on prior mammograms are substantially lower than
that obtained from detection on current mammograms. The
difficulty in recognizing the subtle and possibly different fea-
tures of the masses on priors compared to those of the
masses on current mammograms may be one of the factors
that causes oversight for both radiologists and the CAD sys-
tems.

The goal of pattern recognition is to achieve the best pos-
sible classification performance in the task at hand. Re-
searchers had shown that, for a class of objects with a wide
range of characteristics, the classification performance can be
improved by using combination of classifiers whereby ob-
jects of certain characteristics are classified by one classifier
using a set of features and objects of different characteristics
by another classification scheme based on different
features.29–35 The advantage of using combination of classi-
fiers is that it may stabilize the training of classifiers even
with a relatively small sample size because each classifier
does not have to accommodate a wide range of characteris-
tics and features.36,37 These observations motivated our inter-
est in the design of a dual CAD system for mass detection.

Since the missed cancers on prior mammograms represent
the difficult cases that are more likely to be missed by radi-
ologists if similar cancers occur on screening mammograms,
it is important to improve the sensitivity of the CAD system
in detecting these cancers. On the other hand, when a CAD
system is applied to a new mammogram in clinical practice,
it has to detect breast lesions of all degrees of subtlety effec-

tively. However, it is difficult to train a single CAD system to
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provide optimal detection for all lesions over the entire spec-
trum of subtlety because the classifiers have to make com-
promises to accommodate cancers of a wide range of char-
acteristics. Therefore, we have been exploring a new dual
CAD system approach that combines a CAD system trained
with retrospectively seen masses on prior mammograms with
a CAD system trained with masses detected on current
mammograms.38,39 In this paper, we will describe the design
of the dual CAD system and report our current results.

II. MATERIALS AND METHOD

A. Data sets

All mammograms in this study were collected from pa-
tient files in the Department of Radiology at the University
of Michigan with Institutional Review Board �IRB� ap-
proval. The mammograms were digitized with a LUMISYS
85 laser film scanner with a pixel size of 50 �m�50 �m
and 4096 gray levels. The scanner was calibrated to have a
linear relationship between gray levels and optical densities
�O.D.� from 0.1 to greater than 3 O.D. units. The nominal
O.D. range of the scanner is 0–4. The full resolution mam-
mograms were first smoothed with a 2�2 box filter and
subsampled by a factor of 2, resulting in 100 �m
�100 �m images. The images at a pixel size of 100 �m
�100 �m were used for the input of our CAD system.

We collected three data sets. The first data set contained
115 cases with confirmed masses. Each case included the
current mammograms that prompted the radiologist to work
up the mass. This is referred to as the “average” mass set. All
of the cases in the average mass set had two mammographic
views: the craniocaudal view and the mediolateral oblique
view or the lateral view, thus yielding a total of 230 mam-
mograms. There were 115 masses �67 malignant masses and
48 benign masses� in this data set, of which 105 were
biopsy-proven and 10 were determined to be benign by long-
term follow-up.

The second data set was composed of the prior mammo-
grams dated one to two years earlier than the mammograms
of the same patients in the average mass set. Since the
masses on prior mammograms are on average subtler than
those on current mammograms, this data set is referred to as
the “subtle” mass set. On 5 of the 115 patients, no mass or
focal density could be identified on either view of the prior
mammograms. Therefore, the subtle mass set was composed
of 110 cases �62 malignant and 48 benign�. For the purpose
of training the subtle mass detection system, the subtle
masses do not have to be obtained from the same cases as the
average mass set but we used the available prior mammo-
grams for these mass cases in our database. Nineteen of the
110 cases had two prior mammogram examinations. Of the
129 examinations in the subtle mass set, 123 had two mam-
mographic views and 6 had three views, with a total of 264
mammograms. Many of the subtle masses on the prior mam-
mograms could be identified only as a focal density corre-
sponding to the location of the subsequently detected mass

on the current mammograms. On 44 of the two-view prior



4159 Wei et al.: Dual CAD system for mammographic mass detection 4159
mammograms, the mass location was evident only on one
view. Table I summarizes the information for the average and
subtle mass subsets.

The third data set was composed of 260 normal bilateral
two-view mammograms obtained from 65 patients. No
masses were evident on these mammograms upon review by
the experienced radiologist.

The two mass data sets were used to estimate the detec-
tion sensitivity and the normal data set was used for estimat-
ing the FP marker rate. For the mass data sets, the true loca-
tions of the masses were identified by an experienced MQSA
radiologist using all available imaging and clinical informa-
tion. The radiologist also provided an estimate of the longest
diameter of the mass, descriptors of its margin and shape, a
visibility rating, and an estimate of the breast density in
terms of BI-RADS category. Figure 1 shows the distributions
of mass sizes, mass shapes, mass margins, and their visibility
on a 10-point rating scale with 1 representing the most vis-
ible masses and 10 the most difficult case relative to the
cases seen in their clinical practice. The masses had a mean
of 13.7 mm and a median of 12 mm in the average data set
and a mean of 9.7 mm and a median of 10 mm in the subtle
data set. Figure 2 shows the breast density for both the nor-
mal data set and the mass data sets. As can be seen from the
distributions of the mass characteristics, the average masses
on the current mammograms and the subtle masses on the
priors had large overlap. Nevertheless, on average, the subtle
masses were smaller in size and less conspicuous on the

TABLE I. Description of cases in the average and subtle mass data sets and
the subsets for training and testing in the cross-validation scheme.

Mass subset 1 Mass subset 2

Average
mass subset

Subtle
mass subset

Average
mass subset

Subtle
mass subset

Total No. of cases 57 54 58 56
Cases with two

prior examinations
NA 10 NA 9

Exams with two
views

57 58 58 65

Exams with three
views

0 6 0 0

Total No.
of images

114 134 116 130

No. of negative
images

0 25 0 19

No. of mass images
for training

114 109 116 111

No. of two-view
pairs for testing

57 64 58 65

No. of images for
testing

114 128 116 130

No. of malignant
masses

36 33 31 29

No. of benign
masses

21 21 27 27
mammograms.
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B. Methods

In order to improve the sensitivity of detecting breast le-
sions of all degrees of subtlety, we developed a new dual
system approach which combines a system trained with av-
erage masses with another system trained with subtle masses.
When the trained dual system is applied to an unknown
mammogram, the two CAD systems are used in parallel to
detect suspicious objects on a single mammogram. No prior
mammogram is needed. The additional FPs from the use of
the two systems are reduced by an information fusion stage.
We will refer to the two systems separately trained with the
average masses and the subtle masses as “single” CAD sys-
tems in the following discussions.

We randomly separated the mass data sets by case into
two independent subsets. Both the average and subtle mass
subsets followed the same case grouping so that mammo-
grams from the same case would not be separated into the
training subset for one single CAD system and the test subset
for the other single CAD system in a cross-validation cycle.
Table I shows the subsets of cases in the average and subtle
mass data sets. Two-fold cross validation was used for train-
ing and testing the algorithms. The training included select-
ing proper parameters for each single CAD system and for
information fusion. Once the training with one mass subset
was completed, the parameters were fixed for testing with the
other mass subset. The training and test mass subsets were
switched and the training and test processes were repeated.
The CAD systems were trained with single mammograms.
To maximize the number of training images with masses, all
images with a visible mass were included regardless of
whether they were a part of a two-view or three-view case
when the subtle mass subset was used as a training set. How-
ever, when the subtle mass subset was used as a test set, only
two views were included for each case because we used two-
view mammograms to derive the case-based test perfor-
mance. For cases containing three views, we therefore in-
cluded only two of the views in testing. We also included
cases with the mass visible on only one of the two views.
After the two-fold cross validation testing, the overall detec-
tion performance was evaluated by combining the perfor-
mances of the two test subsets. The trained algorithms with
the fixed parameters were also applied to the normal set of
mammograms, which was not used during training, to esti-
mate the FP rate in screening mammograms.

1. Single CAD system overview

The major steps in the two single mass detection systems
are similar but the feature spaces and classifiers for FP re-
duction in each system were designed separately to suit the
characteristics of average and subtle masses, respectively.
The two systems are therefore described together in the fol-
lowing but the differences will be pointed out whenever ap-
plicable. Each single CAD system consists of four process-
ing steps: �1� prescreening of mass candidates, �2�

segmentation of suspicious objects, �3� feature extraction and
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analysis, and �4� FP reduction by classification of normal
tissue structures and masses. The block diagram for the de-
tection scheme is shown in Fig. 3.

For the prescreening stage, we have developed a two-
stage gradient field analysis method which not only uses the
shape information of masses on mammograms but also in-
corporates the gray level information of the local object seg-

FIG. 1. The characteristics of the masses in our mass data set: �a� distributio
1 representing the most visible masses and 10 the most subtle masses rel
distribution of mass margins, C: circumscribed, Ind: indistinct, M: microlob

FIG. 2. The distribution of breast density in terms of BI-RADS categories

estimated by an MQSA radiologist.
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mented by a region growing technique in the second stage to
refine the gradient field analysis.24,40 Locations of high radial
gradient convergence are labeled as mass candidates. After
prescreening, the suspicious objects are identified by using a
two-stage segmentation method.41 First, the background-

ass sizes, �b� distribution of mass visibility on a 10-point rating scale with
to the cases seen in clinical practice, �c� distribution of mass shapes, �d�
d, Ob: obscured, Sp: spiculated.

FIG. 3. Schematic diagram of our single CAD system for mass detection.
The FP classification stage includes rule-based classification, a morphologi-
cal LDA classifier, and a texture feature LDA classifier for differentiating
n of m
ative
masses from normal breast tissues.
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corrected ROI is weighted by a two-dimensional Gaussian
function with �=256 pixels to enhance the central region.
Sobel filtering is then applied to the Gaussian-weighted ROI
to generate another enhanced image. Second, a k-means clus-
tering using the pixel values from these two images as fea-
tures is used to segment the object. For each suspicious ob-
ject, eleven morphological features21 were extracted. Rule-
based and linear discriminant classifiers were trained by
using the training data set only to remove the detected struc-
tures that were substantially different from breast masses.
For the system trained with average masses, global and local
multiresolution texture analysis42 were performed in each
ROI by using the spatial gray level dependence �SGLD� ma-
trices. A total of 364 features were extracted from global
texture analysis. Local texture features were extracted from
the local region containing the detected object and the pe-
ripheral regions within each ROI. A total of 208 features
were extracted for local texture analysis. For the system
trained with subtle masses, instead of the SGLD texture fea-
tures, gray level features and run length statistics analysis
�RLS� texture features43 were extracted inside and outside of
each mass region on the original image and gradient field
image. The gray level features included the contrast of the
object relative to the surrounding background, the minimum
and the maximum gray levels, and the characteristics derived
from the gray level histogram in the regions inside and out-
side of each object including skewness, kurtosis, energy, and
entropy. Five RLS texture features were extracted in both the
horizontal and vertical directions: short runs emphasis, long
runs emphasis, gray level nonuniformity, run length nonuni-
formity, and run percentage. A total of 66 features were ex-
tracted for the system trained with subtle masses.

In order to obtain the best texture feature subset and also
reduce the dimensionality of the feature space to design an
effective classifier, stepwise feature selection with linear dis-
criminant analysis �LDA� was applied to the training subset.
The detailed procedure has been described elsewhere.24,44,45

Briefly, at each step one feature was entered or removed
from the feature pool by analyzing its effect on the selection
criterion, which was chosen to be the Wilks’ lambda in this
study. Since the appropriate values of thresholds for feature
entry, feature elimination, and tolerance of correlation for
feature selection were unknown, we used an automated sim-
plex optimization method to search for the best combination
of thresholds in the parameter space. The simplex algorithm
used a leave-one-case-out resampling method within the
training subset to select features and estimate the weights for
the LDA classifier. To have a figure-of-merit to guide feature
selection, the test discriminant scores from the left-out cases
were analyzed using receiver operating characteristic �ROC�
methodology.46 The accuracy for classification of masses and
FPs was evaluated as the area under the ROC curve, Az. In
this approach, feature selection was performed without the
left-out case so that the test performance would be less op-
timistically biased.47 However, the selected feature set in
each leave-one-case-out cycle could be slightly different be-
cause every cycle had one training case different from the

other cycles. In order to obtain a single trained classifier to
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apply to the independent test subset, a final stepwise feature
selection was performed with the best combination of thresh-
olds, found in the simplex optimization procedure, on the
entire training subset to obtain the final set of features and
estimate the weights of the LDA. Note that the entire process
of feature selection and classifier weight estimation was per-
formed within the training subset. The LDA classifier with
the selected feature set was then fixed and applied to the
independent test subset. The training and testing processes
were performed independently for the two-fold cross-
validation sets.

2. Training and test for dual system

The block diagram for the dual system is shown in Fig. 4.
During the training of the dual system, we used the current
and prior mammograms from the same patients. The current
mammograms that contained the average masses were only
used to train the first single CAD system. The prior mammo-
grams that contained the subtle masses were only used to
train the second single CAD system. The prescreening and
the segmentation steps in the two systems are identical.
Since the morphological appearances of average and subtle
masses are different, the rules in the morphological rule-
based FP classification are trained differently for the two
single CAD systems. During testing with an independent
mammogram, the dual system keeps all the suspicious ob-
jects that satisfy the FP classification rules of either single
CAD system and applies the LDA classifiers from both
single systems to each object. Each object thus has two LDA
scores.

To merge the information from the two CAD systems, a
fusion scheme was developed for our dual system. In this
study, a feed-forward backpropagation artificial neural net-
work �BP-ANN� was trained to classify the masses from nor-
mal tissues by combining the output information from the
two single CAD systems. The LDA classifiers from the two
single CAD systems were applied to each detected object.
The two LDA discriminant scores for each object were used
as input to the BP-ANN. The BP-ANN had an input layer
with two nodes, a hidden layer with N nodes, and an output
layer with one node. The nodes were interconnected by
weights and information propagated from one layer to the
next through a log-sigmoidal activation function. The learn-
ing of the ANN was a supervised process in which known

FIG. 4. Schematic diagram of proposed dual CAD system for mass detec-
tion. BP-ANN is used for information fusion.
training cases were input to the ANN. The performance func-
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tion for the network was the mean-squared error between the
network outputs and the target outputs. The weights of the
network were adjusted iteratively by a feedforward back-
propagation procedure to minimize the error. Detailed de-
scription of the backpropagation neural network can be
found in the literature.48,49

To choose the number of hidden nodes �N� in the BP-
ANN, we used a three-fold cross-validation method within
the training subset. We randomly separated the entire training
subset including all detected objects into three independent
groups. The objects belonging to the same case were sepa-
rated into the same group. For a given N, three training
cycles were performed, in each of which two of the three
groups were used to train the BP-ANN and the left-out group
was used to test its performance. The Az value obtained from
the ANN output scores for the test group was used as the
performance index for that training cycle. The average of the
Az values from the three test groups represented the perfor-
mance of the BP-ANN with N hidden nodes. In our experi-
ment, a BP-ANN with 3 hidden nodes provided the largest
average Az value and was therefore chosen. The weights of
the chosen BP-ANN were retrained with the entire training
subset. The BP-ANN with the trained weights was used to
merge the information from the two single CAD systems.

To test the dual system, the two trained single CAD sys-
tems, one trained with the average mass set and the other
with the subtle mass set, were applied in parallel to each
single “unknown” mammogram in the independent test sub-
set. No prior mammogram was needed during testing.

3. Evaluation methods

The detected individual objects were compared with the
“truth” ROI marked by the experienced radiologist, as de-
scribed earlier. A detected object was scored as TP if the
overlap between the bounding box of the detected object and
the bounding box of the true mass relative to the larger of the
two bounding boxes was over 25%. Otherwise, it would be
scored as FP. The 25% threshold was selected as described in
our previous study.21

The FP marker rate was estimated in two ways: one from
detection on the same test subsets with masses, the other
from detection on the normal data set of negative mammo-
grams. For the latter, we applied the trained dual CAD sys-
tem to the normal data set. The number of FP marks pro-
duced by the CAD system was determined by counting the
detected objects on the normal cases. The mass detection
sensitivity was determined by counting the detected masses
on the test mass subset. The detection performance of the
CAD system was assessed by free response ROC �FROC�
analysis. A FROC curve was obtained by plotting the mass
detection sensitivity as a function of FP marks per image
either obtained from the mass data subset or the normal set at
the corresponding decision threshold.

FROC curves were presented on a per-mammogram and a
per-case basis. For image-based FROC analysis, the mass on
each mammogram was considered an independent true ob-

ject. For case-based FROC analysis, the same mass imaged
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on the two-view mammograms was considered to be one true
object and detection of either or both masses on the two
views was considered to be a TP detection.

Since we used two-fold cross validation method for train-
ing and testing, we obtained two test FROC curves, one for
each test subset, for each of the conditions �e.g., single CAD
system approach or dual system approach�. To summarize
the results for comparison, an average test FROC curve was
derived by averaging the FP rates at the same sensitivity
along the FROC curves of the two corresponding test sub-
sets.

In order to compare the performance of the single CAD
system and the dual CAD system, we applied the alternative
free-response ROC �AFROC� method and the jackknife free-
response ROC �JAFROC� method developed by Chakraborty
et al.50,51 to the pairs of FROC curves. In the AFROC
method, the FROC data are first transformed by counting the
number of false-positive images �FPIs� instead of the FPs per
image. The confidence rating of a FPI is determined by the
highest confidence FP decision on the image regardless of
how many lower confidence FP decisions are made on the
same image. The ROCKIT curve fitting software and statistical
significance tests for ROC analysis developed by Metz et
al.46 can then be used to analyze the AFROC data.

III. RESULTS

Figure 5 shows an example of the two-dimensional fea-
ture space that was used as the input to the BP-ANN being
trained to merge the information from the two single CAD
subsystems. The two features are the output scores of the
LDA classifiers trained with the average masses and with the
subtle masses. The correlation coefficients of the two fea-
tures are 0.46 and 0.44 for each of the training subsets, re-
spectively. The low correlation indicated that the two single
CAD systems extracted relatively independent features from
the object. The Az values of the chosen ANN were 0.92±0.01
and 0.87±0.01, respectively, as estimated by validation in

FIG. 5. An example of a scatter plot of the LDA scores from the two single
CAD systems which are used as input to the BP-ANN. The correlation
coefficient between the scores of two LDA classifiers is 0.46, indicating that
the two LDA scores are essentially independent features.
the training process. The ANN classifiers achieved Az values
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of 0.90±0.02 and 0.89±0.01 on the two independent test
subsets, respectively. Figure 6 shows the ROC curves for the
two test subsets.

In order to evaluate the effectiveness of our dual system
approach, we compared its performance on the test subsets
containing average masses with two other single CAD sys-
tems: the CAD system trained only on the average mass set
and the CAD system trained on both the average and the
subtle mass sets. When a single CAD system was trained
only with the average masses, the number of selected fea-
tures was 21 �14 global and 7 local� and 16 �10 global and 6
local� texture features for the two independent training sub-
sets, respectively. When the CAD system was trained with
both the average and the subtle masses, the number of se-
lected features was 17 �11 global and 6 local� and 18 �7
global and 11 local� texture features for the two independent
training subsets, respectively.

For the dual system, the single system trained with the
average masses was the same as that described earlier. For
the single system trained with subtle masses, four �2 gray
level and 2 RLS texture� and five �3 gray level and 2 RLS
texture� features were selected for the two independent train-
ing subsets, respectively.

The average test FROC curves of the dual CAD system
on the test subsets with average masses were compared to
those of the single CAD systems in Fig. 7. The FP rates were
estimated from the mass data set. The dual CAD system
achieved a case-based sensitivity of 80%, 85%, and 90% at
0.6, 0.8, and 1.0 FPs/image, respectively, compared with 1.3,
1.5, and 1.8 FPs/image on the single CAD system trained
with average masses alone. The performance of the single
CAD system trained with both the average masses and the
subtle masses was comparable to that trained with average
masses alone, with FP rates of 1.4, 1.6, and 1.8 FPs/image at
the same sensitivities, respectively. Figure 8 shows the com-
parison of the three average test FROC curves, similar to
those shown in Fig. 7, except that the FP rates were esti-
mated from the normal data set. The FP rates at a few se-
lected sensitivities for the dual and single CAD systems were

FIG. 6. The test ROC curves for the BP-ANN classifiers from the two in-
dependent mass subsets. The ANN classifiers achieved an Az value of
0.90±0.02 for test subset 1 and 0.89±0.01 for test subset 2 in the classifi-
cation of mass and normal breast tissues.
summarized in Table II.
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In this study, we have 67 malignant cases in the average
mass set. Figure 9 compares the average test FROC curves of
the single CAD system and the dual system for detection of
malignant masses. The result for the single CAD system
trained with average masses was shown and the FP rate was
estimated from the mammograms without masses. In this
case, the dual CAD system achieved a case-based sensitivity
of 80%, 85%, and 90% at 0.6, 0.9, and 1.2 FP marks/image,
respectively, compared with 1.1, 1.6, and 2.0 FP marks/
image on the single CAD system.

An important purpose of a CAD system is to serve as a
second reader to alert radiologists to subtle cancers that may
be overlooked. Figures 10 and 11 compare the average
FROC curves of the single CAD system and the dual system
for detection in the test subsets with subtle masses. The TP
rate in Fig. 10 was estimated by including both malignant
and benign masses and that in Fig. 11 was estimated from
malignant masses only. The single CAD system trained with

FIG. 7. Comparison of the average test FROC curves obtained from aver-
aging the FROC curves of the two independent average-mass subsets. Three
CAD systems were compared: a single CAD system trained with average
masses alone, a single CAD system trained with both the average and the
subtle masses, and the dual CAD system. The FP rate was estimated from
the mammograms with masses. �a� Image-based FROC curves, �b� case-
based FROC curves.
average masses alone was used. The FP rates for both sys-
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tems were estimated from the mammograms without masses.
The dual CAD system achieved a case-based sensitivity of
50% at 0.7 FP marks/image for all masses and at 0.5 FP
marks/image for malignant masses only, compared with 1.4

FIG. 8. Comparison of the average test FROC curves obtained from aver-
aging the FROC curves of the two independent average-mass subsets. Three
CAD systems were compared: a single CAD system trained with average
masses only, a single CAD system trained with the average and the subtle
masses, and the dual CAD system. The FP rate was estimated from the
mammograms without masses. �a� Image-based FROC curves, �b� case-
based FROC curves.

TABLE II. Comparison of case-based detection performance between the
dual system and the single CAD system trained with average masses alone.
The FP marker rates were estimated from detection on the normal data set.
The FROC curves were obtained by averaging the FROC curves of the two
test subsets.

TP

Average mass test set
�FP marks/image�

Subtle mass test set
�FP marks/image�

Single system Dual system Single system Dual system

90% 2.2 1.2
80% 1.5 0.7 2.8
70% 1.0 0.3 2.4 2.3
60% 0.5 0.2 1.8 1.5
50% 0.3 0.1 1.4 0.7
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FP marks/image for all masses and 1.1 FP marks/image for
malignant masses only using the single CAD system.

Table II summarizes the test results on the average and
subtle mass sets for the dual system and the single CAD
system trained with average masses at different sensitivity
levels. The FP marker rates were estimated from the detec-
tion on the normal data set.

The comparison of the FROC curves for the dual CAD
system and the single CAD system in terms of the area under
the fitted AFROC curve �A1� and the p values for both test
subsets with average masses was summarized in Table III.
The differences between the A1 values for the two systems
were statistically significant �p�0.05�. The fitted AFROC
curves, however, did not fit very well to the transformed
AFROC data, as we discussed previously.24 For the JAFROC
method, Chakraborty et al. provided software to estimate the
statistical significance of the difference between two FROC
curves. The comparison of the figure-of-merit �FOM� and the

FIG. 9. Comparison of the average test FROC curves of the single CAD
system and the dual CAD system for detection of malignant masses in the
average data set. The single system trained with average masses alone was
used and the FP rate was estimated from the mammograms without masses.
�a� Image-based FROC curves, �b� case-based FROC curves.
p values was also summarized in Table III. The differences
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between the FOM of the dual CAD system and that of the
single CAD system for both test subsets were again statisti-
cally significant �p�0.05�.

The comparison of A1, the FOM, and the p values for the
dual system and the single system trained with average
masses in detecting subtle masses was summarized in Table
IV. It was found that the differences between the results of
the dual CAD system and those of the single CAD system on
the two test subsets containing subtle masses were statisti-
cally significant by both the JAFROC and the AFROC meth-
ods.

IV. DISCUSSION

The masses on prior mammograms are more subtle and
more difficult to detect than the masses on current mammo-
grams. In this study, we developed a dual CAD system,
which combines a system trained with masses on prior mam-
mograms and a system trained with masses detected on cur-
rent mammograms. We have demonstrated that this dual sys-

FIG. 10. Comparison of the average test FROC curves for the single CAD
system and the dual CAD system for detection of the subtle masses on the
prior mammograms. The single CAD system trained with average masses
alone was used and the FP rate was estimated from the mammograms with-
out masses. �a� Image-based FROC curves, �b� case-based FROC curves.
tem can increase the accuracy of detecting both average
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masses and subtle masses. The comparisons of the dual sys-
tem with that of the single CAD system trained with average
masses alone and that of the single CAD system trained with
both average and subtle masses �Fig. 7� indicate that the gain
in the detection accuracy of the dual system could not be
achieved by simply using a larger training set with both av-
erage and subtle masses. In fact, it is interesting to note that
the performance of the single CAD system trained with both
the average and the subtle masses appeared to be degraded
slightly, in comparison with the single system trained with
average masses alone, when it was applied to the test set of
average masses. The decreased performance may reflect the
compromise made when the single CAD system was trained
to accommodate a wide range of lesion characteristics. Thus,
the dual system approach may have improved its perfor-
mance through other factors, including the flexibility in using
different feature spaces and training the parameters for each
type of masses and the information fusion combining the two

FIG. 11. Comparison of the average test FROC curves for the single CAD
system and the dual CAD system for detection of subtle malignant masses
on the prior mammograms. The single CAD system trained with average
masses alone was used and the FP rate was estimated from the mammo-
grams without masses. �a� Image-based FROC curves, �b� case-based FROC
curves.
single CAD systems effectively.
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For the comparison of the different systems, we analyzed
the false negatives �FNs� of the single CAD systems and the
dual CAD system when the test subsets with average masses
were used. It was found that the FN rates of the single CAD
system trained with average masses, the single CAD system
trained with subtle masses, and the dual system were 23.9%
�55/230�, 28.3% �65/230�, and 16.5% �38/230�, respec-
tively, after FP reduction by the morphological LDA classi-
fier in each system. Twenty-nine masses were missed by both
of the single systems. By using the dual system, 53 masses
that were FNs for either single system could be detected.
However, the masses that were missed by both of the single
CAD systems could not be recovered by the dual CAD
system.

Our motivation of this study is to improve the perfor-
mance of a CAD system for mass detection. A CAD detec-
tion system is generally intended for use in screening mam-
mography. At the screening stage, all lesions of concern
should be pointed out to radiologists so that the radiologists
can judge if a recall is warranted. If a detection system is
trained to mark only the malignant lesions, it may be at-
tempting to play the role of a triage system �alerting radiolo-
gists to work up only “malignant” cases� rather than that of a
second reader. Furthermore, since computerized lesion detec-
tion or characterization on mammograms is not 100% sensi-

TABLE III. Estimation of the statistical significance in
system and the single CAD system trained with avera
average mass test subsets. The FROC curves with th
compared.

A1 �AFROC�

All cases Malignant c

Test
subset 1

Test
subset 2

Test
subset 1 su

Single
system

0.45 0.44 0.47

Dual
system

0.55 0.53 0.58

p values 0.0004 0.0156 0.0003 0

TABLE IV. Estimation of the statistical significance in
system and the single CAD system trained with avera
subtle mass test subsets. The FROC curves with the
compared.

A1 �AFROC�

All cases Malignant c

Test
subset 1

Test
subset 2

Test
subset 1 su

Single
system

0.17 0.20 0.24

Dual
system

0.28 0.25 0.35

p values �0.0001 0.046 �0.0001 0
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tive, it will be confusing to the radiologists whether an un-
marked suspicious lesion is missed or it is considered benign
by the computer. We believe that computer-aided diagnosis
�CADx� may be used in different ways in conjunction with a
CAD detection system, for example, the likelihood of malig-
nancy may be estimated by the CADx system and displayed
for every detected lesion, and/or a CADx system may be
used during diagnostic workup. Either way the CAD system
will first alert radiologists to all masses, leaving the assess-
ment of malignancy or benignity to a second stage and with
the radiologist being the primary decision maker. The train-
ing set thus included both malignant and benign masses.

For a CAD system, its performance for detecting malig-
nant masses is more important than its performance for de-
tecting all masses. The FROC curves for detection of malig-
nant masses on the average data set and the subtle data set,
shown in Figs. 9 and 11, respectively, indicated that the dual
system could also achieve an improvement in the detection
performance over that of the single system. The differences
in the A1 and the FOM for the detection of malignant cases in
the average and subtle mass test subsets were statistically
significant, as shown in Tables III and IV, respectively.

In screening mammography, the cancer rate is 3–5 per
1000. Most of the mammograms are normal. Therefore,
some CAD researchers and users estimate the FP rate using

ifference between the FROC performance of the dual
asses alone when the systems were evaluated on the
marker rates obtained from the normal data set were

FOM �JAFROC�

All cases Malignant cases

2
Test

subset 1
Test

subset 2
Test

subset 1
Test

subset 2

0.48 0.48 0.53 0.55

0.60 0.56 0.63 0.64

�0.0001 0.007 0.0004 0.0252

ifference between the FROC performance of the dual
asses alone when the systems were evaluated on the
arker rates obtained from the normal data set were

FOM �JAFROC�

All cases Malignant cases

2
Test

subset 1
Test

subset 2
Test

subset 1
Test

subset 2

0.21 0.23 0.24 0.26

0.30 0.28 0.36 0.34

0.0007 0.048 �0.0001 0.0035
the d
ge m

e FP

ases

Test
bset

0.52

0.62

.0318
the d
ge m
FP m

ases

Test
bset

0.25

0.34

.0067
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normal mammograms52–54 because it reflects how the CAD
system performs in terms of specificity and whether the CAD
system may cause extra efforts for radiologists to double
check the marked locations or unnecessary recalls in a
screening setting. Furthermore, for CAD systems that set a
maximum number of detected objects at the output, estimat-
ing the number of FPs using images with lesions can poten-
tially lead to an optimistic bias for the FROC curve because
one of the detected objects will likely be the true lesion. The
FP rate can thus be underestimated by as much as 1 per
image. In addition, the JAFROC analysis requires that the FP
rates be estimated on normal images. We therefore reported
the FP rates of our CAD systems on both mammograms with
masses and without masses to facilitate comparison with
other CAD systems in case investigators may evaluate their
FP rates in either way.

In this study, we evaluated the performance of the trained
CAD systems with an independent test set using the two-fold
cross validation method. Although the selection of param-
eters and features was performed using the training set, we
had full knowledge of the performance for the test set so that
the selections could be optimistically biased. True indepen-
dent testing will have to be performed with unknown cases
that have never been used for testing the CAD system before,
such as those in a prospective clinical trial. However, this
test step is beyond the scope of our current developmental
process. Since we used the same cross-validation method for
evaluation of the dual system and the single CAD systems,
the comparison of their relative performances is expected to
be less biased than their individual performances.

V. CONCLUSION

We have proposed a new dual system approach which
combines a system trained with subtle masses on prior mam-
mograms and a system trained with average masses on cur-
rent mammograms. The dual system achieved higher sensi-
tivities at the corresponding FP rates than a single CAD
system trained with average masses alone or trained with
both average masses and subtle masses. Alternatively, the
dual system had lower FP rates than the single CAD system
at corresponding sensitivities. The improvement in the
FROC curves by the dual system approach was found to be
statistically significant �p�0.05� for both average masses
and subtle masses using either the AFROC or the JAFROC
method. Our results indicate that the dual system approach is
promising for improving the performance of CAD systems
for mass detection on mammograms.
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Computer-Aided Detection Systems for
Breast Masses: Comparison of Performances on

Full-Field Digital Mammograms and Digitized
Screen-Film Mammograms1
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Rationale and Objectives. To compare the performance of computer aided detection (CAD) systems on pairs of full-field
digital mammogram (FFDM) and screen-film mammogram (SFM) obtained from the same patients.

Materials and Methods. Our CAD systems on both modalities have similar architectures that consist of five steps.
For FFDMs, the input raw image is first log-transformed and enhanced by a multiresolution preprocessing scheme.
For digitized SFMs, the input image is smoothed and subsampled to a pixel size of 100 �m � 100 �m. For both
CAD systems, the mammogram after preprocessing undergoes a gradient field analysis followed by clustering-based
region growing to identify suspicious breast structures. Each of these structures is refined in a local segmentation
process. Morphologic and texture features are then extracted from each detected structure, and trained rule-based and
linear discriminant analysis classifiers are used to differentiate masses from normal tissues. Two datasets, one with
masses and the other without masses, were collected. The mass dataset contained 131 cases with 131 biopsy proven
masses, of which 27 were malignant and 104 benign. The true locations of the masses were identified by an experi-
enced Mammography Quality Standards Act (MQSA) radiologist. The no-mass data set contained 98 cases. The time
interval between the FFDM and the corresponding SFM was 0 to 118 days.

Results. Our CAD system achieved case-based sensitivities of 70%, 80%, and 90% at 0.9, 1.5, and 2.6 false positive (FP)
marks/image, respectively, on FFDMs, and the same sensitivities at 1.0, 1.4, and 2.6 FP marks/image, respectively, on
SFMs.

Conclusions. The difference in the performances of our FFDM and SFM CAD systems did not achieve statistical signifi-
cance.

Key Words. Computer-aided detection; mass detection; full-field digital mammogram (FFDM); screen-film mammogram
(SFM); free-response receiver operating characteristic (FROC).
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Full-field digital mammography (FFDM) and screen-
film mammography (SFM) are two available methods
for breast cancer screening in clinical practice. FFDM
detectors provide higher detective quantum efficiency
(DQE) and signal-to-noise ratio (SNR), wider dynamic
range, and higher contrast sensitivity than SFM. FFDM
may alleviate some of the limitations of SFM, espe-
cially in breasts with dense fibroglandular tissue (1). In
the last few years, several FFDM systems became com-
mercially available because of the potential of digital
imaging to improve breast cancer detection.

Several clinical trials have been conducted to compare
radiologists’ interpretation on FFDMs and SFMs. Lewin
et al (2,3) conducted a clinical study to compare FFDMs
and SFMs for the detection of breast cancer in 6,737 ex-
aminations of women 40 years of age and older collected
from two institutions. Forty-two cancers were detected
within this population. The difference in cancer detection
was not statistically significant (P � .1) between FFDMs
and SFMs. FFDMs resulted in fewer recalls than did
SFM, which was statistically significant (P � .001). An-
other clinical trial (4) aiming at collecting data for US
Food and Drug Administration approval included SFMs
and FFDMs of 676 women who were scheduled to un-
dergo breast biopsy. The average area under the receiver
operating characteristic (ROC) curve, the sensitivity and
the specificity were 0.715, 0.66 and 0.67 for printed
FFDM and 0.765, 0.74, 0.60 for SFM, respectively. How-
ever, none of these differences achieved statistical signifi-
cance. Skaane et al (5–7) has conducted several clinical
studies to compare SFM and FFDM with soft-copy inter-
pretation for reader performance in detection and classifi-
cation of breast lesions. According to their findings, there
was no significant difference between FFDM and SFM
either in detection or in classification. A recent study by
Pisano et al (1) collected a total of 49,528 patients at 33
sites in the United States and Canada. Mammograms
were interpreted independently by two radiologists. The
overall diagnostic accuracy of FFDMs and SFMs for
breast cancers was similar. However, FFDM was more
accurate in women younger than age 50 years, women
with radiographically dense breasts, and premenopausal or
perimenopausal women.

Studies indicate that radiologists do not detect all car-
cinomas that are visible on retrospective analyses of the
images (8–14). Computer-aided diagnosis (CAD) is con-
sidered to be one of the promising approaches that may
improve the sensitivity of mammography (15,16). Most of

the mammographic CAD systems developed so far are

660
based on digitized SFMs. Li et al (17) attempted to adapt
their CAD system developed on SFMs for detection of
masses on FFDMs by standardizing the FFDMs. Their
preliminary results on a small data set (training on 36
normal and 24 mass cases, testing on 24 normal and 10
mass cases) showed 60% sensitivity at 2.47 false posi-
tives (FPs)/image. Several commercial CAD systems re-
ported comparable performance on FFDMs and SFMs.
However, their study was not reported in peer-reviewed
journals, so that the dataset and algorithm are unknown.
So far, there are no studies on comparison of breast mass
detection between FFDMs and SFMs from the same pa-
tients by using CAD system. We have developed a CAD
system for mass detection on SFMs (18,19) and are
adapting the system to FFDMs. Our preliminary study
with 65 patients was reported previously (20). In this
study, we compared the performance of the two CAD
systems on case-matched pairs of FFDMs and SFMs.

MATERIALS AND METHODS

Materials
Our study group consisted of patients with breast le-

sions that were categorized suspicious and recommended
for biopsy. The patients had either FFDM or SFM for
their clinical exams. Institutional review board approval
and patient informed consent were obtained to acquire
corresponding mammograms of the breast to be biopsied
using the other modality. Therefore, the corresponding
FFDM and SFM were available only from one breast for
each patient. The time interval between the SFM and the
FFDM ranged from 0 to 118 days. The dataset consisted
of 229 patients aged 30–86 with a mean age of 55 � 11
years. All cases have two mammographic views, the
craniocaudal view and the mediolateral oblique view or
the lateral view, yielding a total of 458 FFDMs and 458
corresponding SFMs. The SFMs were acquired with
MinR2000 screen-film systems (Eastman Kodak,
Rochester, NY) and digitized with a LUMISCAN 85 laser
film scanner (Lumisys, Los Altos, CA) at a pixel resolu-
tion of 50 �m � 50 �m and 4096 gray levels. The digi-
tizer was calibrated so that gray-level values were linearly
proportional to the optical density in the range of 0–4,
with a slope of 0.001 per pixel value. The digitizer output
was linearly converted so that a large pixel value corre-
sponded to a low optical density. FFDMs were acquired
with a GE Senographe 2000D system (GE Medical Sys-

tems, Milwaukee, WI). The GE system has a CsI
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phosphor/a:Si active matrix flat panel digital detector with
a pixel size of 100 �m � 100 �m and 14 bits per pixel.
The raw FFDMs were used as the input of our CAD sys-
tem.

The dataset included 131 cases containing masses
and 98 cases containing microcalcifications without a
visible mass, as determined with visual inspection by
an experienced radiologist. The 131 cases will be re-
ferred to as the mass dataset and the 98 cases as the
“no-mass” data set in the following discussion. The
no-mass cases were considered as “normal” with re-
spect to masses and were used to estimate the FP mark
rates of the CAD systems during testing. The mass
dataset contained 131 biopsy proved masses, of which
27 were malignant and 104 benign. By examining all
available information, including the diagnostic mam-
mograms and reports, the true locations of the masses
were identified by an experienced Mammography Qual-
ity Standards Act (MQSA) radiologist. In these 131
mass cases, 1 mass can be seen only on FFDMs, 7
masses can be seen on only one view on both FFDMs
and SFMs, and 3 masses can be seen on only one view
on either FFDMs (1 mass) or SFMs (2 masses). There
were therefore 131 visible masses on FFDMs and 130
visible masses on SFMs if the masses were counted by
case. There were 254 visible and 8 invisible masses on
FFDMs and 251 visible and 11 invisible masses on
SFMs if the masses were counted independently by
mammographic view. The number of images and
masses in the mass dataset are described in Table 1.
Figure 1 shows an example with a 7-mm malignant
mass. The size of a mass was estimated as its longest
diameter seen on the mammograms. The visibility of the
masses was rated by the experienced radiologist on a 10-

Table 1
Description of Cases in the Mass Datasets and Subsets for Tra

Mass S

FFDM

Total number of cases 131
Total number of images 262
Number of visible masses (by case) 131
Number of masses only visible on one view 8
Number of visible masses (by image) 254
Number of visible malignant masses 27
Number of visible benign masses 104

FFDM: full-field digital mammogram; SFM: screen-film mammog
point scale, with 1 representing the most visible masses and
10 the most difficult case relative to the cases seen in clini-
cal practice. Figures 2 and 3 show the histograms of mass
sizes and visibility, respectively, for the mass set. The mass
size ranged from 3 to 30 mm (mean: 12.5 � 4.9 mm on
FFDMs and 12.6 � 4.9 mm on SFMs) and the visibility
ratings extended over the entire range. Figure 4 shows the
breast density in terms of BI-RADS category as estimated

Figure 1. An example of mammograms with a region of interest
(ROI) containing a malignant mass with a size of 7 mm. (a) Pro-
cessed full-field digital mammogram (FFDM) by using the Lapla-
cian pyramid multiscale method, (b) digitized screen-film mam-
mogram (SFM), (c) magnified ROI on FFDM, and (d) magnified
ROI on SFM. The SFM is displayed with the same resolution as
that of the FFDM. The apparently smaller breast size on SFM is
mainly caused by the very dark breast periphery region on the
SFM that cannot be seen on the printed page.

and Testing in the Twofold Cross-Validation Scheme

Mass Subset 1 Mass Subset 2

FM FFDM SFM FFDM SFM

31 65 65 66 66
62 130 130 132 132
30 65 65 66 65
9 5 5 3 4

51 125 125 129 126
27 12 12 15 15
03 53 53 51 50
ining

et

S

1
2
1

2

1

by the radiologist for the FFDM and SFM datasets.
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METHODS

CAD System
The major steps in the mass detection systems on

FFDMs and SFMs are similar, but the feature spaces and
classifiers for FP reduction in each system were designed
separately to suit the characteristics of FFDMs and SFMs.
The two systems are therefore described together, but the
differences will be pointed out whenever applicable. Each

Figure 2. Histogram of the sizes for 254 masses on full-field
digital mammograms (FFDMs) and 251 masses on the screen-film
mammograms (SFMs) in our dataset. Mass sizes are measured as
the longest dimension of the mass by an experienced Mammog-
raphy Quality Standards Act (MQSA) radiologist. The size of the
masses in the dataset ranged from 3 to 30 mm (mean: 12.5 � 4.9
mm on FFDMs and 12.6 � 4.9 mm on SFMs).

Figure 3. Histogram of the visibility of the 254 masses seen on
full-field digital mammograms and 251 masses seen on screen-
film mammograms in our dataset. The visibility is evaluated on a
10-point rating scale, with 1 representing the most visible masses
and 10 the most difficult case relative the cases seen in their clin-
ical practice. Each mass on a mammogram is rated indepen-
dently by an experienced MQSA radiologist.
single CAD system consists of five processing steps:
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1) preprocessing, 2) prescreening of mass candidates, 3)
segmentation of suspicious objects, 4) feature extraction
and analysis, and 5) FP reduction by classification of nor-
mal tissue structures and masses.

FFDMs are generally preprocessed with proprietary
methods by the manufacturer of the FFDM system before
being displayed to readers. The image preprocessing
method used depends on the manufacturer of the FFDM
system. To develop a CAD system that is less dependent
on the FFDM manufacturer’s proprietary preprocessing
methods, we use the raw FFDM as input to our CAD
system. We have previously developed a multiscale pre-
processing scheme for image enhancement (21). In brief,
the raw mammogram is first segmented automatically into
the background and the breast region. A logarithmic
transform is applied to the image which is then scaled to
12-bit. The Laplacian pyramid method (21,22) is used to
decompose the transformed breast image into multiscales.
A nonlinear weight function based on the pixel gray level
from each of the low-pass components is designed to en-
hance the high-pass components. The processed image is
reconstructed by summing the weighted components.

For SFMs, the full resolution digitized mammograms
are smoothed with a 2 � 2 box filter and subsampled by
a factor of 2, resulting in images having a pixel size of
100 �m � 100 �m. These images are used as input to
the CAD system.

After preprocessing, a two-stage gradient field analysis

Figure 4. Distribution of the breast density for the 229 cases in
terms of BI-RADS category estimated by an MQSA radiologist.
method (21,23) is used to identify the mass candidates for
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either FFDMs or SFMs. In brief, a gradient field analysis
is employed in the first stage to identify potential mass
candidates based on high values of the initial gradient
field. Each potential mass candidate is segmented by a
region growing technique. The shape and the gray-level
information of the segmented object allow adaptive re-
finement of the gradient field analysis in the second stage.
Locations of high radial gradient convergence are then
labeled as mass candidates. These suspicious objects are
segmented with a k-means clustering method (24). First, a
256 � 256 pixel region of interest (ROI) centered at the
high gradient point is background-corrected (25) and
weighted by a Gaussian function with � � 256 pixels.
K-means clustering using the pixel values in a back-
ground-corrected image and a Sobel filtered image as fea-
tures is then used to segment the object.

For each suspicious object, eleven morphological fea-
tures (18) are extracted. A rule-based classifier removes
the detected structures that are substantially different from
breast masses. Global and local multiresolution texture
analyses (26) are performed in each ROI by using the
spatial gray-level dependence (SGLD) matrices. Thirteen
SGLD texture measures are used. Global texture features
are extracted from the entire ROI for two scales, seven
distances, and two angles. Local texture features are ex-
tracted from the local region containing the detected ob-
ject and the peripheral regions within each ROI for two
scales, four distances, and two angles. Therefore, a total
of 364 features and 208 features, respectively, are ex-
tracted from global and local texture analysis. The feature
space for final classification is the combination of mor-
phologic features and SGLD texture features. Finally, lin-
ear discriminant analysis (LDA) is used to classify masses
from normal tissue in the feature space. The discriminant
scores are ranked for each mammogram, and any object
with a discriminant score that ranks lower than three is
eliminated.

Training and Test CAD System
Twofold cross-validation was used for training and

testing our CAD system for FFDMs. We randomly sepa-
rated the mass datasets by case into two independent sub-
sets: subset 1 with 65 cases and subset 2 with 66 cases.
The numbers of masses by image and by case for the
FFDM and SFM subsets are shown in Table 1. The train-
ing included selection of proper parameters and features
for the classifier in the CAD system. After the training
with one mass subset was completed, the parameters and

features were fixed for testing with the other mass subset.
The training and test mass subsets were switched and the
training and test processes were repeated. The trained
CAD systems were also applied to the no-mass data set,
which was not used during training, to estimate the FP
rate in screening mammograms.

During training, feature selection with stepwise LDA
was applied to obtain the best feature subset and reduce
the dimensionality of the feature space to design an effec-
tive classifier. The detailed procedure has been described
elsewhere (21,27,28). Briefly, at each step one feature
was entered or removed from the feature pool by analyz-
ing its effect on the selection criterion, which was chosen
to be the Wilks’ lambda in this study. Because the appro-
priate threshold values for feature entry, feature elimina-
tion, and tolerance of feature correlation were unknown,
we used an automated simplex optimization method to
search for the best combination of thresholds in the pa-
rameter space. The simplex algorithm used a leave-one-
case-out resampling method within the training subset to
select features and estimate the weights for the LDA clas-
sifier. To have a figure of merit to guide feature selection,
the test discriminant scores from the left-out cases were
analyzed using ROC methodology (29). The accuracy for
classification of masses and FPs was evaluated as the area
under the ROC curve, Az, for the test cases. In this ap-
proach, feature selection was performed without the left-
out case so that the test performance would be less opti-
mistically biased (30). However, the selected feature set
in each leave-one-case-out cycle could be slightly differ-
ent because every cycle had one training case different
from the other cycles. To obtain a single trained classifier
to apply to the cross-validation test subset, a final step-
wise feature selection was performed with the best combi-
nation of thresholds, found in the simplex optimization
procedure, on the entire training subset to obtain the final
set of features and estimate the weights of the LDA. Note
that the entire process of feature selection and classifier
weight estimation was performed within the training sub-
set. The LDA classifier with the selected feature set was
then fixed and applied to the cross-validation test subset.
The training and testing processes were performed inde-
pendently for the twofold cross-validation sets.

Because we already trained our CAD system for SFMs
with a large dataset in a previous study (19), we used the
trained system without retraining the parameters in this
study. For testing, we divided the SFMs into two test
datasets that followed the same case grouping as that for

FFDMs. The test cases in each subset did not overlap
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with any training cases used for training the SFM CAD
system in the previous study.

Evaluation Methods
We used a free-response ROC (FROC) method (31) to

assess the overall performance of the CAD scheme on
this image set. A FROC curve is obtained by plotting the
mass detection sensitivity as a function of FP marks per
image as the decision threshold on the LDA classifier
scores varies.

The detected individual objects were compared with
the “true” mass locations marked by the experienced radi-
ologist, as described previously. A detected object was
labeled as true positive (TP) if the overlap between the
bounding box of the detected object and the bounding
box of the true mass relative to the larger of the two
bounding boxes was over 25%. Otherwise, it would be
labeled as FP. The 25% threshold was selected as de-
scribed in our previous study (18).

FROC curves were presented on a per-image and a
per-case basis. For image-based FROC analysis, the mass
on each mammogram was considered an independent true
object; the sensitivity was thus calculated relative to the
number of masses by image on each subset of FFDMs or
SFMs (Table 1). For case-based FROC analysis, the same
mass imaged on the two-view mammograms was consid-
ered to be one true object and detection of either or both
masses on the two views was considered to be a TP de-
tection; the sensitivity was thus calculated relative to the
number of masses by case on each subset of FFDMs or
SFMs (Table 1). The test FROC curve for a given mass
subset was estimated by counting the detected masses on
the test mass subset for the sensitivity. The FP marker
rate was estimated in two ways: one from FPs detected in
the same test mass subsets, the other from FPs detected in
the no-mass dataset. For the latter, we applied the trained
CAD system to the entire no-mass dataset. The average
number of FP marks per image produced by the CAD
system at a given sensitivity was estimated by counting
the detected objects in these cases at the corresponding
decision threshold. Because we used twofold cross-valida-
tion method for training and testing, we obtained two test
FROC curves, one for each test subset, for each of the
modalities. To summarize the results for comparison, an
average test FROC curve was derived by averaging the
FP rates at the same sensitivity along the FROC curves of
the two corresponding test subsets.

To compare the performance of our CAD system for

FFDMs and SFMs statistically, we applied the alternative
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free-response ROC (AFROC) method and the jackknife
free-response ROC (JAFROC) method developed by
Chakraborty et al (32,33) to the pairs of FROC curves. In
the AFROC method, the FROC data are first transformed
by counting the number of false-positive images instead
of the FPs per image. The LDA score of a false-positive
image is determined by the highest score FP object on the
image regardless of how many lower scores FP objects
are made on the same image. The ROCKIT curve fitting
software and statistical significance tests for ROC analysis
developed by Metz et al (29) can then be used to analyze
the AFROC data.

RESULTS

For simplicity, we combined the detection results on
the two test subsets from the twofold cross-validation pro-
cess in the following discussion. The prescreening stage
detected 91.3% (232/254) of the masses with an average
of 10.13 (2,655/262) FPs /image on FFDMs and 93.2%
(234/251) with an average of 14.43 (3,781/262) FPs/im-
age on SFMs. Figure 5 compares the FROC curves on
FFDMs and SFMs during the prescreening stage. The
FROC curves were generated by varying the number of
detected suspicious objects per image based on the rank-

Figure 5. Comparison of free-response receiver operating char-
acteristic (FROC) curves on full-field digital mammograms and
screen-film mammograms during the prescreening stage. The
FROC curves were generated by varying the number of detected
suspicious objects per image based on the ranking of the local
maxima on gradient field images. The FP rate was estimated from
the mammograms with masses.
ing of local maxima on the gradient field images.
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We used two steps for FP reduction for both CAD
systems. The first step was the rule-based classification
based on morphologic features. After this step, there were
2,572 mass candidates (9.8 objects/image) on FFDMs and
3,654 mass candidates (13.9 objects/image) on SFMs
without additional FNs for the test sets of 262 images.
The second step was the LDA classification. A total of 16
(4 global texture features, 7 local texture features, and 5
morphologic features) and 12 (4 global texture features, 4
local texture features, and 4 morphologic features) fea-
tures, respectively, were selected from the two indepen-
dent training subsets for FFDMs. The feature set for
SFMs contained a total of 21 features (11 global texture
features, 7 local texture features, and 3 morphologic fea-
tures), as obtained from previous training.

Figure 6 shows the comparison of the average test
FROC curves of the CAD systems for FFDMs and SFMs.
The FFDM CAD system achieved a case-based sensitivity
of 70%, 80%, and 90% at 0.67, 1.15, and 1.93 FPs/image,
respectively, compared with 0.75, 1.06, and 1.86 FPs/
image for the SFM CAD system. Because two trained
CAD systems were obtained for the FFDMs from the
cross-validation training, we applied each of the trained
systems to the no-mass data set for FROC analysis, and
estimated the number of FP marks per image on the no-
mass cases at each decision threshold. For each trained
CAD system, the sensitivity was estimated from the de-
tected masses on the test mass subset and plotted against
the FP rate estimated from the no-mass set. Figure 7
shows the average FROC curves for FFDMs and SFMs,
similar to those shown in Fig 6, except that the FP rates
were estimated from the no-mass data set.

The comparison of the FROC curves for the FFDM
and SFM CAD systems in terms of the area under the
fitted AFROC curve (A1) and the P values for both test
mass subsets are summarized in Table 2. The differences
in the A1 values between the two modalities did not
achieve statistical significance (P � .05). The fitted
AFROC curves, however, did not fit very well to the
transformed AFROC data, as discussed previously (21).
For the JAFROC method, Chakraborty et al provided
software to estimate the statistical significance of the dif-
ference between two FROC curves. The comparison of
the figure-of-merit (FOM) and the P values is also sum-
marized in Table 2. The differences in the FOMs between
the FFDM and SFM CAD systems again did not achieve
statistical significance (P � .05).

There were 27 malignant cases in the mass set.

Figure 8 compares the average test FROC curves of the
FFDM and SFM CAD systems for detection of malignant
masses. The FP rate was estimated from the no-mass
dataset. In this case, the FFDM CAD system achieved a
case-based sensitivity of 70%, 80%, and 90% at 0.37,
0.73, and 1.31 FP marks/image, respectively, which were
substantially better than the FP rates of 1.1, 1.6, and 2.0
FP marks/image for the SFM CAD system. However, the
difference did not achieve statistical significance
(P � .05).

A total of 105 FFDM cases and 134 SFM cases were

Figure 6. Comparison of the average test free-response receiver
operating characteristic (FROC) curves obtained from averaging
the FROC curves of the two independent mass subsets on full-
field digital mammograms and screen-film mammograms. The FP
rate was estimated from the mammograms with masses. (a) Im-
age-based FROC curves and (b) case-based FROC curves.
identified as BI-RADS 3 and 4 categories by an MQSA
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radiologist (Fig 4). Of these, 88 cases (56 mass cases and
32 no-mass cases) were in common. Figure 9 compares
the average test FROC curves of the FFDM and SFM
CAD systems for detection of masses only on this com-
mon subset of dense breasts. The FP rate was estimated
from the 32 no-mass dense breasts. Although the FROC
curve for the FFDMs appears to be slightly higher than
that of the SFMs, the difference did not achieve statistical

Figure 7. Comparison of the average test free-response receiver
operating characteristic (FROC) curves obtained from averaging
the FROC curves of the two independent mass subsets on full-
field digital mammograms and screen-film mammograms. The
FP rate was estimated from the mammograms without masses.
(a) Image-based FROC curves and (b) case-based FROC
curves.
significance (P � .05).
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DISCUSSION

CAD systems have been proven to be helpful as a sec-
ond opinion to assist radiologists in interpretation of
SFMs. Recently several studies have been conducted to
compare FFDM with SFM in screening cohorts (1,4,5,34).
These clinical trials arrived at different conclusions about
the advantages or disadvantages of FFDM in comparison
to conventional SFM systems. Some of the differences
may be attributed to factors such as the mammographic
equipment, the study design, the sample sizes, and the
reader experience. It is also important to compare the per-
formances of FFDM and SFM CAD systems. In our
study, we compared the performance of the two systems
on pairs of FFDM and SFM obtained from the same pa-
tients at close time intervals.

Several FFDM systems have been approved for clini-
cal applications. Because digital detectors generally have
a linear response to x-ray exposure, the raw pixel values
are a linear function of the absorbed x-ray energy in the
detector. To develop a CAD system that is less dependent
on the FFDM manufacturer’s proprietary preprocessing
methods, we used the raw FFDM as input to our CAD
system. Although the spatial resolution and noise proper-
ties of the images from different detectors were still dif-
ferent, the use of raw images already reduced one of the
major differences between mammograms from different
FFDM systems. For preprocessing of the raw FFDMs, we
developed a multiresolution enhancement method. From
our observation on the SFMs and the processed FFDMs,
the breast tissue on SFMs appears to be denser than that
on FFDMs (35). This may be attributed to the harder
beam quality used and the Laplacian enhancement on
FFDMs. In this study, 134 SFM cases were rated as
BI-RADS 3 and 4 categories by an MQSA radiologist,
whereas only 105 FFDM cases were rated as BI-RADS 3
and 4. When the FFDM and SFM CAD systems were
applied to the small common subset (56 with masses and
32 without masses) of dense breasts rated as BI-RADS 3
and 4, there was no significant difference between their
average test FROC curves (Fig 9).

The overall performances of the CAD systems for the
two modalities did not demonstrate significant difference
for comparisons in either the subsets or the entire dataset.
One factor may be the substantially smaller number of
training samples used for the FFDM CAD system than
that for the SFM CAD system, which was trained with a

set of 486 SFMs in a previous study (19). We have



Image-based FROC curves and (b) case-based FROC curves.

FROC, ; FFDM, full-field digital mammogram; SFM, screen-film mamm
free-response receiver operating characteristic; FOM, figure-of-merit; JA
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shown previously that a classifier designed with a larger
number of training samples will have better generalization
to unknown test cases (36). Furthermore, because our
CAD system was originally developed on SFMs, some of
those techniques used may favor SFMs. If new techniques
are designed to specifically suit the properties of FFDMs,
the biases may be reduced. Further investigations are un-
derway to improve the FFDM CAD system.

We used a twofold cross-validation method for training
and testing of the CAD systems. Feature selection and
classifier weight design were performed within the train-
ing subset and thus were independent of the test subset.
Kupinski et al (37) showed that feature selection and clas-
sifier weight design using the same training set of a lim-
ited size will introduce additional optimistic bias to the
training result and thus additional pessimistic bias to the
test result. Under the constraint of a limited training set,
the relative gain or loss in terms of bias if the training set
is further split into two subsets for separate feature selec-
tion and classifier weight design in comparison to using
the entire set of available training samples for both pro-
cesses is still unknown. The relative efficiency of differ-
ent resampling techniques in utilization of a limited data-
set for classifier design with or without feature selection
remains an important area of further studies. In screening
mammography, the cancer rate is about 3–5 per 1,000.
Most of the mammograms are normal. Therefore, some
CAD researchers and users estimate the FP rate using
normal mammograms (38–40) because it reflects how the
CAD system performs in terms of specificity in a screen-
ing setting. Furthermore, for CAD systems that set a max-
imum number of detected objects at the output, estimating
the number of FPs using images with lesions can poten-
tially lead to an optimistic bias for the FROC curve be-

OC Performances Between the FFDM and SFM CAD Systems

FOM (JAFROC)

All Cases Malignant Cases

2 Test Subset 1 Test Subset 2 Test Subset 1 Test Subset 2

0.47 0.48 0.55 0.47
0.46 0.41 0.48 0.42
.73 .33 .29 .59

s dataset were compared.
ogram; CAD, computed-aided detection; AFROC, alternative
FROC, jackknife free-response ROC.
Figure 8. Comparison of the average test free-response receiver
operating characteristic (FROC) curves of computed-aided detec-
tion systems on full-field digital mammograms and screen-film
mammograms for mammograms with malignant masses. The FP
rate was estimated from the mammograms without masses. (a)
Table 2
Estimation of the Statistical Significance of the Difference in the FR

A1 (AFROC)

All Cases Malignant Cases

Test Subset 1 Test Subset 2 Test Subset 1 Test Subset

FFDM 0.48 0.49 0.51 0.49
SFM 0.42 0.43 0.47 0.42
P values .17 .16 .56 .23

The FROC curves with the FP marker rates obtained from the no-mas
cause one of the detected objects will likely be the true
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lesion. The FP rate can thus be underestimated by as
much as 1 per image. In addition, the JAFROC analysis
requires that the FP rates be estimated on normal images.
We therefore reported the FP rates of our CAD systems
on both mammograms with masses and without masses to
facilitate comparison with other CAD systems in case
investigators may evaluate their FP rates in either way.

Although we collected case-matched cases for compar-
ing the performances of the CAD systems for FFDMs and

Figure 9. Comparison of the average test free-response receiver
operating characteristic (FROC) curves of computed-aided detec-
tion systems on full-field digital mammograms and screen-film
mammograms for the common subset of 56 dense breasts with
masses rated as BI-RADS 3 and 4. The FP rate was estimated
from 32 no-mass dense breasts that were also rated as BI-RADS
3 and 4. (a) Image-based FROC curves and (b) case-based
FROC curves.
SFMs, the images may not be exactly matched. Variations
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from positioning, compression force, and the difference in
time between the two acquisitions would cause differ-
ences in the subtlety of the masses on the FFDMs and
SFMs. However, assuming that the differences are ran-
dom, both datasets would include images that have better
or worse positioning, for example, than that on the other
modality. The differences in the various factors would
likely be averaged out over the entire dataset. We expect
that they might not cause substantial bias in the compari-
son of the relative performances of the CAD systems for
the two modalities.

For a CAD system, its performance for detecting ma-
lignant masses is more important than its performance for
detecting all masses. We only have 27 malignant cases in
this dataset. Although the FROC curves for detection of
malignant masses (Fig 8) indicated that the FFDM CAD
system had a higher sensitivity than that of the SFM
CAD system, the differences in the A1 and the FOM did
not achieve statistical significance (P � .05) for either
test subsets, as shown in Table 2. A large dataset is being
collected for further comparison of the FFDM and SFM
CAD systems for breast cancer cases.

Conclusion

We compared the performance of our CAD systems
for detection of breast masses on case-matched FFDM
images and SFM images. The two CAD systems used
similar computer vision techniques but their preprocessing
methods were different and the FP classifiers were sepa-
rately trained to adapt to the image properties of each
modality. From the comparison of FROC curves, it was
found that the FFDM CAD system achieved higher detec-
tion sensitivity than the SFM CAD system at the same FP
rates for malignant cases. However, the performances of
our FFDM and SFM CAD systems for the entire data set
were similar. The differences between the two modalities
were not statistically significant with both AFROC and
JAFROC methods for either the entire dataset or the ma-
lignant cases alone. Further study is under way to collect
a larger dataset and to improve the performances of both
systems.
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ABSTRACT 

We have developed a false positive (FP) reduction method based on analysis of bilateral 

mammograms for computerized mass detection systems.  The mass candidates on each view were 

first detected by our unilateral computer-aided detection (CAD) system. For each detected object, a 

regional registration technique was used to define a region of interest (ROI) that is “symmetrical” to 

the object location on the contralateral mammogram.  Texture features derived from the spatial 

gray level dependence (SGLD) matrices and morphological features were extracted from the ROI 

containing the detected object on a mammogram and its corresponding ROI on the contralateral 

mammogram. Bilateral features were then generated from corresponding pairs of unilateral features 

for each object. Two linear discriminant analysis (LDA) classifiers were trained from the unilateral 

and the bilateral feature spaces, respectively. Finally, the scores from the unilateral LDA classifier 

and the bilateral LDA asymmetry classifier were fused with a third LDA whose output score was 

used to distinguish true mass from false positives (FPs). A data set of 341 cases of bilateral two-

view mammograms was used in this study, of which 276 cases with 552 bilateral pairs contained 

110 malignant and 166 benign biopsy-proven masses and 65 cases with 130 bilateral pairs were 

normal. The mass data set was divided into two subsets for 2-fold cross-validation training and 

testing. The normal data set was used for estimation of FP rates. It was found that our bilateral CAD 

system achieved a case-based sensitivity of 70%, 80%, and 85% at average FP rates of 0.35, 0.75, 

and 0.95 FPs/image, respectively, on the test data sets with malignant masses. In comparison to the 

average FP rates for the unilateral CAD system of 0.58, 1.33, and 1.63, respectively, at the 

corresponding sensitivities, the FP rates were reduced by 40%, 44%, and 42% with the bilateral 

symmetry information. The improvement was statistically significance (p<0.05) as estimated by 

JAFROC analysis. 
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I. INTRODUCTION 60 
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Breast cancer is one of the leading causes of death among American women between 40 to 55 years 

of age.1  It has been reported that early diagnosis and treatment can improve significantly the 

chance of survival for patients with breast cancer.2-4  Although mammography is a powerful 

screening tool for detecting breast cancer,5, 6 studies indicate that a substantial fraction of breast 

cancers that are visible upon retrospective analyses of the images are not detected initially.7-9  It has 

been shown that computer-aided detection (CAD) can increase the cancer detection rate by 

radiologists both in the laboratory and in clinical practice.10-15   

In screening mammography, two mammographic views, cranio-caudal (CC) and mediolateral 

oblique (MLO) views are generally taken of each breast.  During mammographic interpretation, the 

radiologist combines complex information including morphology, texture, and geometric location of 

any suspicious structures of the imaged breast from different views, asymmetric density patterns 

between bilateral mammograms of the same view, and changes between the current and the prior 

mammograms if available. Radiologists have found that these techniques are effective in improving 

the accuracy of detecting subtle lesions and reducing false positives (FPs). 

Investigators have attempted to implement the multiple image techniques in CAD systems to 

improve the detection accuracy of abnormalities and the classification accuracy of differentiating 

malignant and benign lesions. Hadjiiski et al.16 developed an interval change analysis of masses on 

current and prior mammograms and found that the classification accuracy of masses can be 

improved significantly in comparison to single image classification. Paquerault et al.17 developed a 

two-view (CC and MLO views) fusion technique to reduce FPs in mass detection and obtained 

significant improvement by comparing to their one-view detection system. Engeland et al.18 recently 

presented a two-view CAD system by using the features including the difference in the radial 
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distance from the candidate regions to the nipple, the gray scale correlation between both regions, 

and the mass likelihood of the regions determined by the single view CAD scheme. Yin et al.19 used 

bilateral subtraction in a prescreening step of a mass detection program to locate mass candidates, 

but the subsequent image analysis was performed based only on a single view. Mendez et al.20 

developed a bilateral CAD system based on a bilateral subtraction approach and used size and 

eccentricity tests and texture features to eliminate FPs. Again, the bilateral information is only used 

to find the suspicious objects and the subsequent analysis is based on a single view.  
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The detection of masses on mammograms is a challenging task.  The normal fibroglandular 

tissue in the breast causes FPs by mimicking masses and causes false negatives (FNs) due to 

overlapping with lesions.  In order to improve the performance of our mass detection system, we 

are investigating computer-vision methods by incorporating information from two-view 

mammograms17 and bilateral mammograms,21 emulating radiologists’ mammographic interpretation 

techniques. In this study, we will discuss our approach to FP reduction by analyzing the symmetry or 

asymmetry of density patterns between bilateral mammograms.  

 

II. MATERIALS AND METHODS 

A. Data Sets 

A database of mammograms was collected from patient files at the Department of Radiology with 

Institutional Review Board (IRB) approval. The mammograms were digitized by a Lumiscan laser 

scanner with a pixel size of mm μμ 5050 ×  and 12 bits per pixel.  The pixel size was increased to 

mm μμ 100100 ×  by averaging every 2×2 adjacent pixels before being input to the CAD system. In 

this study, two data sets are used: a mass data set containing bilateral digitized mammograms with 

malignant or benign masses and a no-mass data set containing bilateral digitized mammograms 105 
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without masses, verified by an experienced radiologist. All cases had four mammographic views, 

the CC view and the MLO view mammogram for both breasts. The mass set and the no-mass data 

set contained 276 cases (552 bilateral pairs) and 65 cases (130 bilateral pairs), respectively, yielding 

a total of 1364 mammograms. The mass data set was used to estimate the detection sensitivity and 

the no-mass data set was used for estimating the FP rate (number of FPs per image). In the mass data 

set, each patient had a biopsy-proven mass in one of the breasts, resulting in a total of 276 masses, 

166 of which were benign and 110 malignant. An MQSA radiologist identified the location of the 

masses based on all available diagnostic and clinical information of the case, measured the mass 

sizes as the longest dimension seen on the two-view mammograms, provided descriptors of the mass 

shapes and mass margins, and also provided an estimate of the breast density in term of BI-RADS 

category. Figure 1 shows the information of our data set which includes the distributions of mass 

sizes, mass shapes, mass margins, and breast density.  
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For training and evaluation of the performances of the CAD systems, the cases in our mass 

data set were divided into two independent data subsets containing 136 and 140 cases, respectively, 

for two-fold cross validation training and testing. Of the 136 cases in subset 1, 52 were malignant 

and 84 were benign.  Of the 140 cases in subset 2, 58 were malignant and 82 were benign. The no-

mass data set was not used during training.  All 260 mammograms were kept as independent test 

samples to be used with both test subsets. 

 
B. Methods 

Our bilateral CAD system combines unilateral features with bilateral features to reduce FPs. Similar 

structures that appear in both right and left mammograms at corresponding locations are more likely 

to be normal tissue than masses, whereas asymmetric density may indicate a developing lesion. The 
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key of this system is therefore the design of a classifier that can differentiate symmetry and 

asymmetry of paired ROIs in corresponding regions on bilateral mammograms of the same view. 

The system consists of four steps: (1) mass candidate (MC) localization, (2) corresponding ROIs 

(CR) registration, (3) feature extraction and analysis, and (4) bilateral information fusion. Figure 2 

shows the block diagram for our bilateral CAD system. The detailed description for each step is 

presented below. 
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1. Mass Candidate Localization  

Identification of mass candidates is performed by the following two steps: breast segmentation and 

mass candidate detection. The breast image is first segmented from the surrounding image 

background by boundary detection.  

The algorithm developed by Zhou et al.22 in our laboratory is used to track the breast 

boundary and segment the breast from the background. Mass detection is performed only in the 

breast region.  We have previously developed a mass detection system for unilateral 

mammograms.23-25 The system is used for mass candidate detection in the current study.  The 

system performs mass detection in two steps. In the first step, a gradient field analysis method is 

used to determine the seeds of mass candidates followed by a region growing24 method to segment 

the mass candidates starting from those seeds.  In the second step, the gradient convergence is 

calculated using the gray levels and the shape of the segmented mass region as a priori information. 

The mass candidates that pass the gradient convergence criterion are retained for further analysis in 

the bilateral system.  Figure 3 shows an example of mass candidates detected on a mammogram. 

Figure 3(a), 3(b), and 3(c) show the original image, detected breast boundary, and the detected mass 

candidates, respectively.  
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2. Corresponding ROI Registration 

For each mass candidate, its corresponding ROI on the contralateral mammogram is identified by the 

regional registration technique developed previously in our laboratory16 with a modification to 

handle the special case when the distance between the nipple location and the center of an ROI is too 

small to obtain the intersection points on the breast boundary. The nipple location on each image 

was manually identified so that the effectiveness of the bilateral analysis method could be evaluated 

independent of nipple detection errors.  

155 

160 The original region registration technique included the following steps. The registration is 

performed in a polar coordinate system where the origin is located at the nipple location of a breast 

image. Figure 4 shows an example of locating the corresponding ROI of a mass candidate on the 

contralateral mammogram. Using the distance r from the nipple o to the center of the mass as the 

radius, an arc centered at the origin (nipple) is drawn. The arc will intersect the mass candidate and 

the breast boundary at two points, p and q.  The angle between om  and op  is defined as θ , the 

angle between 

165 

op  and oq  is defined as α.  On the contralateral mammogram, the corresponding 

ROI m’ is localized with a similar procedure.  An arc of radius r centered at the nipple o’ of the 

contralateral mammogram is drawn.  The intersections of the arc with the breast boundary are p’ 

and q’.  The angle between '' po  and ''qo  is defined as α’. The location of the corresponding 

ROI as determined by the angle 'θ  between '' po  and the radius ''mo  is estimated as ./' αθα  

The coordinate of the center of the corresponding ROI is therefore given by (r, '

170 

θ ).     

For some special cases that the nipple is located within the breast, not on the breast boundary 

(referred to as an inward nipple), our original regional registration method may fail since the 
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distance from the nipple to the mass candidate can be too short to obtain two intersection points on 

the breast boundary. In order to handle those special cases, the new origin will be derived by 

horizontally shifting the origin of the polar coordinate system toward the breast boundary until the 

intersection on the breast boundary is reached. In this way, the radius can be roughly determined 

such that the corresponding ROI location can be estimated. Figure 5 shows an example of the 

modified regional registration. Figure 5(a) shows an example that the distance 

175 

om  between the 

nipple and a mass candidate is too small to obtain two intersection points at the breast boundary. 

After horizontally shifting the origin from o to n in Figure 5(a) and the origin from o’ to n’ in Figure 

5(b), the location of the corresponding ROI m’ is estimated based on the new origins using the 

regional registration technique as described above.  
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3. Feature Extraction and Analysis 

3.1 Feature Extraction 

For the features analysis, two types of features, SGLD (spatial gray-level dependence) texture 

features and morphological features are extracted from both the ROI containing the detected mass 

candidate and its contralateral ROI.  

For the SGLD features, thirteen texture measures24-26 are extracted from the entire ROI (referred to 

as the global texture features) at 14 distances and 2 angles with a total of 364 (13x14x2) features.  

The same 13 texture measures are extracted from the central region containing the detected object 

and the peripheral regions within each ROI (referred to as the local texture features) at 4 distances 

and 2 angles with a total of 104 (13x2x4) features from the central region and 104 features as the 

difference of the corresponding features in the central and the peripheral regions.25 
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Twelve morphological features are extracted from the object segmented within the ROI.24, 25 

Five of them are based on the normalized radial length (NRL), defined as the Euclidean distance 

from the object centroid to each of its edge pixels and normalized relative to the maximum radial 

length for the object.27 In our previous studies, we found that the mean, standard deviation, entropy, 

area ratio, and zero crossing count features derived from the NRL are useful for discriminating 

between objects containing masses and normal tissue.24 The other six morphological features are the 

perimeter, area, perimeter-to-area ratio, circularity, rectangularity, and contrast of the object.24 The 

last morphological feature is the summary Fourier descriptor measure,28 which is obtained from the 

Fourier transform of the object boundary sequence. Objects with more irregular contours have more 

high-frequency components than those with smooth contours.29  
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3.2 Unilateral CAD System 

The unilateral LDA classifier uses only the SGLD texture features as input predictor variables as 

described previously.25  The stepwise LDA feature selection strategy with simplex optimization16 

was used to select the best texture feature subset and reduce the dimensionality of the feature space.  

Two-fold cross validation was used to train and test the CAD systems, as discussed below.  For 

each of the two cross validation cycles, the algorithm used a leave-one-case-out resampling method 

and simplex optimization within the training subset to estimate the best threshold values, Fin, Fout, 

and tolerance, based on the F statistics for stepwise feature selection.  The chosen Fin, Fout and 

tolerance values are then used to select a set of features and the weights for the LDA classifier are 

estimated from the training subset. The test subset was thus independent of the classifier training in 

each cross-validation cycle.  This procedure has been described in more details previously.23 
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4. Bilateral Information Fusion 

4.1 Bilateral LDA Classifier 220 

The bilateral LDA classifier incorporates the “symmetry” information on the left and right breasts 

to differentiate symmetric (likely FPs) and asymmetric (likely masses) structures. Bilateral features 

are derived from the unilateral SGLD texture features and the morphological features for each pair 

of ROIs – a detected mass candidate and its corresponding ROI, using the following relationship:  

)],[],,[(
)],[],,[(],[

   
   

jiCRjiMCMin
jiCRjiMCMaxjiBF =                       (1) 225 

230 

235 

where  and  are the  feature of the  mass candidate and the  feature 

of the  corresponding ROI, respectively. The bilateral LDA classifier was trained in a similar 

way as that for the unilateral LDA classifier, as described above. 

],[ jiMC
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4.2 Bilateral CAD System 

In the last stage, the discriminant scores of the unilateral and bilateral classifiers are merged by a 

third LDA. The weights of this LDA classifier were also trained with the training subset. The 

output score from the third LDA is used to differentiate TPs from FPs in the bilateral CAD system.  

 

5. Evaluation Methods 

The detected individual objects were compared with the true mass location marked by an 

experienced radiologist. An object was considered to be a true positive (TP) if the overlap between 

the detected object and the true mass was greater than 25%. The 25% threshold was selected as 

described in our previous study.30  
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To evaluate the performance of our bilateral LDA classifier, the test discriminant scores were 

analyzed using receiver operating characteristic (ROC) methodology.31 The accuracy for 

classification of mass and normal tissue was evaluated as the area under the ROC curve, .  

240 
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zA

The detection performance of the bilateral CAD system was assessed by free response ROC 

(FROC) analysis. An FROC curve shows the relationship between the detection sensitivity and the 

FP rate as the decision threshold varies.  FROC curves were presented on a per-image and a per-

case basis. For image-based FROC analysis, the mass on each mammogram was considered an 

independent true object. For case-based FROC analysis, the same mass imaged on the two-view 

mammograms was considered to be one true object and detection of the masses on either view or on 

both views was considered to be a TP detection.  

Two sets of trained parameters were acquired as a result of the 2-fold cross validation training. 

To estimate the FP rate on normal mammograms when the trained CAD system is used in a 

screening setting, we applied the trained unilateral and bilateral systems to the 260 no-mass 

mammograms for independent testing. The number of FP marks produced by the algorithm was 

estimated by counting the detected objects on these normal cases only. The mass sensitivity was 

determined by counting only the masses on the corresponding test mass subset. The combination of 

the sensitivity from the test mass subset and the FP rate from the normal data set at the 

corresponding detection thresholds resulted in a test FROC curve. The training and testing procedure 

were performed for each cycle of the two-fold cross validation process, thereby generating two test 

FROC curves. To estimate the overall performance of the CAD system, an average test FROC curve 

is obtained by averaging the FP rates from the FROC curves of the two mass subsets at the 

corresponding sensitivities. 
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Chakraborty et al.32 proposed a JAFROC method and provided software to estimate the 

statistical significance of the difference between two FROC curves. We employed the JAFROC 

analysis to evaluate the difference in the FROC curves obtained from the unilateral CAD system and 

the bilateral CAD system. 265 
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III. RESULTS 

A. Bilateral Feature Analysis 

Figures 6 and 7 show examples of detection results obtained from the unilateral system and the 

bilateral system.  Figure 6 shows a mass that was initially detected as a mass candidate but was 

excluded in the false positive reduction steps, and was therefore an FN of the unilateral CAD system.  

The bilateral analysis increased the likelihood score of this mass. It was therefore not excluded in the 

false positive reduction steps and became a TP in the bilateral CAD system. 

Figure 7 shows an example of an FP detected by the unilateral CAD system. The FP was 

excluded in the bilateral system because it was found to have high symmetry with the tissue in the 

contralateral breast, as shown in the ROI in Figure 7(d), by the bilateral analysis.   

 

B. Performance Evaluation 

In the prescreening process, we obtained a large number of mass candidates on each mammogram. 

Each mass candidate was paired with a corresponding ROI in the contralateral breast.  A total of 

3127 and 3402 mass candidates were extracted for training subset 1 and subset 2, respectively, 

which included 98.5% (134/136) and 99.3% (139/140) of the masses in the two subsets. The mass 

candidates in the unilateral mammograms and the ROI pairs from bilateral mammograms in the 

training subset were used to design the unilateral and bilateral classifiers in each of the 2-fold cross-
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validation cycles.  The most effective subset of features from the available feature pool was 

selected for each of the training subsets during the training procedure. For the unilateral LDA 

classifier, twenty (11 global and 9 local) and nineteen (12 global and 7 local) texture features were 

selected from the two independent training subsets, respectively.  For the bilateral LDA classifier, 

twenty-four (11 global texture, 9 local texture and 4 morphological) and twenty-three (12 global, 8 

local, and 3 morphological) features were selected from the two independent training subsets, 

respectively. The validation  values of the LDA classifier during the leave-one-case-out training 

were 0.846 0.011 and 0.832 0.009, respectively, for the two training subsets using the unilateral 

LDA classifier, and were 0.862 0.015 and 0.859 0.012, respectively, using the bilateral LDA 

classifier. The classifiers achieved  values of 0.833 ± 0.015 and 0.831 0.011, respectively, for 

the two test subsets using the unilateral LDA classifier, and 0.853 0.013 and 0.849 0.011, 

respectively, using the bilateral LDA classifier.  
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Figure 8 shows the average test FROC curves for the unilateral and bilateral CAD systems 

after FP reduction with the corresponding trained LDA classifiers when the FP rates were estimated 

from the test subsets with masses. Figure 9 shows the corresponding results when the FP rates were 

estimated on the set of no-mass mammograms. Table I summarizes the average FP rates estimated 

with both the mass and no-mass data sets at several case-based sensitivities.  

Because the detection performance of CAD systems on cancer cases is of prime importance, 

we analyzed the performance of our CAD systems for the subset of cases containing malignant 

masses. Figure 10 compares the average test FROC curves for the unilateral and bilateral CAD 

systems on malignant cases only. Figure 11 shows the average test FROC curves for the unilateral 

and bilateral CAD systems with the sensitivities estimated on malignant cases only and the FP rates 

estimated on the set of no-mass mammograms. The bilateral CAD system achieved a case-based 
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sensitivity of 70%, 80%, and 85% at average FP rates of 0.35, 0.75, and 0.95 FPs/image, 

respectively, on the test subset of malignant masses. In comparison to the average FP rates for the 

unilateral CAD system of 0.58, 1.33, and 1.63 FPs/image, respectively, at the corresponding 

sensitivities, the FP rates were reduced by 40%, 44%, and 42% with the bilateral symmetry 

information. Table II summarizes the average FP rates estimated with both the mass and no-mass 

data sets for cases with malignant masses only at several case-based sensitivities. 
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The figure-of-merit (FOM) from the output of the JAFROC software is summarized in Table 

III(a) for all cases and in Table III(b) for malignant cases only. The difference between the FOMs for 

the unilateral and the bilateral CAD systems was statistically significant (p<0.05) for all 

comparisons.   

 

IV. DISCUSSION  

Symmetry between breast structures in bilateral pairs of mammograms is an important feature used 

by radiologists for mass detection or FP reduction.  Similar structures that appear in both right and 

left mammograms are more likely to be normal tissue than abnormal lesions. Our bilateral analysis 

translates this radiologists’ knowledge to computer vision techniques so that the CAD system can 

utilize the symmetry of breast tissue on bilateral mammograms to improve detection accuracy. The 

results of our study show that the bilateral information is an effective technique for reducing FPs.  

The bilateral features are important factors affecting the performance of the bilateral LDA 

classifier. In this study, the bilateral features were derived from features extracted from each pair of 

ROIs, i.e., the mass candidate and its corresponding ROI, using the maximum-to-minimum ratio 

strategy as shown in Eq. (1). We also investigated if other strategies, including 
],[
],[],[
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−=   , could improve the performance of 

the bilateral CAD system.  It was found that these strategies are not as effective as the maximum-

to-minimum ratio.  
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Specifically, among the  values of all bilateral features, 72% of those from the 

latter strategies are lower than those of their corresponding features obtained by Eq. (1). The advantage of 

using bilateral symmetry measures defined by the maximum-to-minimum ratio can be seen by considering the 

following example: assuming two ROI pairs that are highly asymmetric, (

zA

11 ,CRMC ) and ( 22 ,CRMC ), in 

which  and , their bilateral features derived as the maximum-to-minimum ratio will 

both be greater than 1. However, the bilateral features obtained from
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 will be positive for ( ) but 

negative for ( ).  The bilateral feature defined in Eq. (1) therefore describes the asymmetry 

between the ROI pairs, regardless which ROI has a larger feature value, whereas the other three bilateral 

features do not consistently provide feature values in the same direction.  The maximum-to-minimum ratio 

approach can thus achieve better performance than the other three strategies. 

11 ,CRMC

2MC ,CR

The corresponding ROI registration is an important procedure in the bilateral analysis. The two 

breasts of a given patient are not perfectly symmetrical and other factors such as positioning and 

compression further introduce variability in the symmetry. We investigated the effect of variability 

in the registered ROI locations on bilateral analysis. For this purpose, the pre-screening step of our 

unilateral CAD system was first applied to the contralateral mammogram to locate the mass 

candidates. For a given ROI predicted by the registration method on the contralateral mammogram, 

its location was compared to the ROI locations of these mass candidates by evaluating an overlap 
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ratio, defined as the intersection between the predicted ROI and a mass candidate ROI relative to the 

area of the smaller ROIs. If the overlap ratio of the predicted ROI with a mass candidate ROI was 

greater than a chosen threshold, the location of the predicted ROI would be changed to the location 

of the mass candidate ROI.  If the predicted ROI overlapped with more than one mass candidate 

ROIs, the mass candidate ROI having the largest overlap ratio that exceeded the threshold would be 

used. We evaluated the effects of this ROI location adjustment for a range of thresholds. It was 

found that when the overlap ratio threshold was chosen to be about 0.7 to 0.9, the performance of the 

bilateral CAD system would have a small but insignificant improvement compared to the bilateral 

CAD system without the ROI adjustment process. When the overlap ratio threshold was smaller than 

0.5, the performance of the bilateral CAD system was degraded. This study indicated that small 

variability of the predicted ROI location on the contralateral mammogram does not have a strong 

effect on the performance of the bilateral analysis. 

355 

360 

365 

370 

Various registration methods have been attempted for registration of mammograms of the 

same breast. For example, the warping approach proposed by Sallam et al.33, and the multiple-

control-point approach proposed by Vujovic et al.34. Those approaches depended on the 

identification of corresponding control points.  However, there are few, if any, invariant landmarks 

on mammograms that can be identified automatically because the breast is composed of soft tissue. 

The projected image of the breast tissue often changes even when the same breast is compressed two 

different times.  It is even more variable between a breast and its contralateral breast.  Commonly 

used rigid or non-rigid registration methods will not be appropriate for this application.  We 

therefore developed the regional registration method for correlation of ROIs on mammograms.  Our 

regional registration method uses the nipple and the distance between the nipple and the ROI center 

to be the relatively invariant information.  The lesion in the target breast is estimated to be located 
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within a band of tissue centered along the arc traced using the nipple-to-lesion distance as the radius 

and with the origin at the nipple. This method emulates a technique used by many radiologists in 

identifying corresponding lesions in two-view mammograms or current and prior mammograms.  

Van Engeland et al.35  compared methods for mammogram registration based on breast alignment 

and linear and non-linear warping. They concluded that linear warping using mutual information 

performed better than the other methods. We also performed a study comparing our regional 

registration method to correlation or mutual information based linear and non-linear warping 

methods using a data set of 390 current and prior mammogram pairs36. Our results showed that the 

regional registration method outperformed the warping approaches in identifying corresponding 

lesions on the mammogram pairs. The localization of symmetric ROIs on the bilateral breasts is 

similar to the problem of registering ROIs on current and prior mammograms.  We therefore 

adapted the regional registration method to the bilateral analysis in this study. 

375 

380 

385 

390 

395 

 To implement the bilateral analysis in a practical CAD system, the nipple locations have to 

be detected automatically.  We have previously developed a nipple detection algorithm to 

determine the nipple location on a mammogram. The algorithm could detect the nipple locations 

within 1 cm of the manually identified locations in about 70% of the images in the data set used in 

this study.  A large deviation of the nipple location from the true location may affect the regional 

registration technique in locating the symmetric ROI on the contralateral mammogram, which in turn 

may degrade the performance of the bilateral analysis of tissue symmetry. We therefore used the 

manually identified nipple locations in this study in order to develop the bilateral classifier without 

the influence of other confounding factors. Further work is underway to improve the nipple detection 

algorithm and to investigate the effect of nipple detection accuracy on the performance of the 

bilateral system. 
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The inward nipple projection is often a result of positioning and compression problems so 

that the nipple is not projected in profile. Since there is not enough information from the 2D 

projected mammograms to correct for the deformation of the breast, we designed a simple, ad hoc 

correction method to allow the arc drawn using the nipple-to-mass distance as the radius to intersect 

the breast boundary.  In these cases, the breast image on the bilateral mammogram often does not 

have a similar positioning problem and the difference in the compression of the two breasts may 

cause large uncertainty in the registration regardless of the correction method. For cases in which 

both breasts actually have inward nipples and the breast images are similar, our correction method 

will not cause additional errors because similar correction will be applied to the bilateral 

mammograms and symmetric ROIs will be identified on the mammograms. 

400 

405 

410 

415 

Our motivation of this study is to reduce the FPs of a CAD system for mass detection.  A 

CAD detection system is generally intended for use in screening mammography.  At the screening 

stage, all lesions of concern should be pointed out to radiologists so that the radiologists can judge 

whether a recall is warranted. If a detection system is trained to mark only the malignant lesions, it 

may be attempting to play the role of a triage system (alerting radiologists to work up only 

“malignant” cases) rather than that of a second reader.  Furthermore, since computerized lesion 

detection or characterization on mammograms is not 100% sensitive, it will be confusing to the 

radiologists whether an unmarked suspicious lesion is missed or it is considered benign by the 

computer.  We believe that computer-aided diagnosis (CADx) may be used in different ways in 

conjunction with a CAD detection system.  For example, the likelihood of malignancy may be 

estimated by the CADx system and displayed for every detected lesion, and/or a CADx system may 

be used during diagnostic workup.  Either way the CAD system will first alert radiologists to all 

masses, leaving the assessment of malignancy or benignity to a second stage.  We therefore 
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included both malignant and benign masses in the training sets to train the system to detect all 

masses. 

420 

425 

430 

435 

440 

 

V. CONCLUSIONS 

We developed an FP reduction method to improve computerized mass detection on mammograms 

based on analysis of bilateral information. It was found that the false positives can be reduced by 

training a new classifier for bilateral features and combining its output score with the unilateral 

classifier score. The bilateral CAD system achieved a case-based sensitivity of 70%, 80%, and 85% 

for detection of malignant masses at average FP rates of 0.35, 0.75, and 0.95 FPs/image, respectively, 

on the test data set. In comparison to the average FP rates for the unilateral CAD system of 0.58, 

1.33, and 1.63 FPs/image, respectively, at the corresponding sensitivities, the FP rates were reduced 

by 40%, 44%, and 42% with the bilateral symmetry information. The improvement in the overall 

detection accuracy is statistically significant (p<0.05) by JAFROC analysis. Our results demonstrate 

that the bilateral analysis can differentiate the similarity and dissimilarity between tissues at 

corresponding locations in the bilateral views, and is useful for improving the performance of a 

unilateral CAD system by further reducing the FPs. 
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TABLE I. The average FP reduction rates at case-based sensitivities of 70%, 80%, and 85% for the 
test subsets when the FP rates were estimated from the mass and no-mass data sets. 
 
 FP rate estimated from  

mass data set 
FP rate estimated from  

no-mass data set 

 Unilateral 
CAD 

Bilateral 
CAD 

FP 
Reduction 

Unilateral 
CAD 

Bilateral 
CAD 

FP 
Reduction 

70% 0.70 0.53 24% 0.86 0.53 38% 

80% 1.10 0.87 21% 1.32 1.04 21% 

85% 1.46 1.15 21% 1.72 1.32 23% 
 

 570 

TABLE II. The average FP reduction rates for cases with malignant masses at case-based 
sensitivities of 70%, 80%, and 85% for the test subsets when the FP rates were estimated from the 
mass and no-mass data sets. 
 
 FP rate estimated from  

mass data set 
FP rate estimated from  

no-mass data set 

 Unilateral 
CAD 

Bilateral 
CAD 

FP 
Reduction 

Unilateral 
CAD 

Bilateral 
CAD 

FP 
Reduction 

70% 0.43 0.33 23% 0.58 0.35 40% 

80% 0.78 0.62 21% 1.33 0.75 44% 

85% 0.94 0.78 17% 1.63 0.95 42% 
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TABLE III. Estimation of the statistical significance in the difference between the FROC 
performance of the unilateral and bilateral CAD systems on test subsets 1 and 2. The FP rates of 
the FROC curves were estimated from the no-mass data set: (a) all cases, and (b) malignant 
cases. 

(a) 
 FOM (JAFROC) 
 Test 

subset 1 
Test  

subset 2 
Unilateral CAD 0.52 0.48 
Bilateral CAD 0.58 0.51 

p value <0.001  0.008 
 

(b) 
 FOM (JAFROC) 
 Test 

subset 1 
(malignant only) 

Test  
subset 2 

(malignant only) 
Unilateral CAD 0.56 0.53 
Bilateral CAD 0.61 0.56 

p value 0.009 0.003 
 575 
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FIGURE CAPTIONS 
 
Figure 1. The characteristics of our mass data set. (a) distribution of mass sizes, (b) distribution of 

mass shapes, (c) distribution of mass margins, C: circumscribed, Ind: indistinct, M: microlobulated, 

Ob: obscured, Sp: spiculated, (d) distribution of the breast density in terms of BI-RADS category 

estimated by an MQSA radiologist. 
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Figure 2.  Block diagram of the bilateral CAD system for mass detection on mammograms.  

 
Figure 3.  An example of performing the mass candidate identification. (a) an original mammogram, 

(b) the detected breast boundary of (a), a mass is marked by the arrow, (c) the detected mass 

candidates of (a).   

 
Figure 4. An example of obtaining the corresponding ROI of a mass candidate on the contralateral 

mammogram. (a) mass candidate on the left MLO view at m, (b) corresponding ROI on the right 

MLO view at m’.  

 
Figure 5. An example of obtaining the corresponding ROI based on the modified regional 

registration technique. (a) the nipple location (o), the shifted origin ( ), and the mass candidate (m), 

(b) corresponding ROI on the contralateral mammogram.  

n

 
Figure 6.  (a) Mammogram containing a mass marked by the rectangular box.  (b) A contralateral 

mammogram of (a) and the rectangular box is the corresponding ROI of the mass in (a) estimated by 

the automated regional registration technique.  (c) ROI extracted from (a) containing a mass 

detected at the prescreening stage but excluded at the final stage of the unilateral CAD system.  (d) 
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The corresponding ROI in the contralateral breast. Bilateral analysis of this ROI pair increased the 

likelihood score of the mass which was then detected as a TP in the bilateral CAD system. 

 
Figure 7.  (a) Mammogram and the rectangular ROI containing a mass candidate.  (b) The 

contralateral mammogram of (a) and the rectangular box is the corresponding ROI of the mass 

candidate in (a).  (c) ROI extracted from (a) containing normal tissue detected at the prescreening 

stage and included as an FP at the final stage of the unilateral CAD system.  (d) The corresponding 

ROI in the contralateral breast.  Bilateral analysis of this ROI pair reduced the likelihood score of 

the normal tissue which then became a TN in the bilateral CAD system. 
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Figure 8.  (a) Image-based and (b) case-based average test FROC curves from the unilateral and the 

bilateral CAD systems. The FP rates were estimated from detection on mammograms in the test 

subsets with masses. 

 
Figure 9.  (a) Image-based and (b) case-based average test FROC curves from the unilateral and the 

bilateral CAD systems. The FP rates were estimated from detection on mammograms in the no-mass 

data set. 

 
Figure 10.  (a) Image-based and (b) case-based average test FROC curves from the unilateral and 

bilateral CAD systems for detection on cases with malignant masses only. The FP rates were 

estimated from in the same data set. 

 
Figure 11.  (a) Image-based and (b) case-based average test FROC curves from the unilateral and 

bilateral CAD systems for detection on cases with malignant masses only. The FP rates were 

estimated from the no-mass data set. 
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Figure 1. The characteristics of our mass data set. (a) distribution of mass sizes, (b) distribution of 
mass shapes, (c) distribution of mass margins, C: circumscribed, Ind: indistinct, M: microlobulated, 
Ob: obscured, Sp: spiculated, (d) distribution of the breast density in terms of BI-RADS category 
estimated by an MQSA radiologist. 630 
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Figure 2.  Block diagram of the bilateral CAD system for mass detection on mammograms.  
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Figure 3.  An example of performing the mass candidate identification. (a) an original mammogram, 
(b) the detected breast boundary of (a), a mass is marked by the arrow, (c) the detected mass 
candidates of (a).   

 29



 640 

645 

650 

655 

660 

665 

 

 

 

 

 

 

 

 

 

Figure 4. An example of obtaining the corresponding ROI of a mass candidate on the contralateral 
mammogram. (a) mass candidate on the left MLO view at m, (b) corresponding ROI on the right 
MLO view at m’. 
 
 

 

 

 

 

 

 

 

 

Figure 5. An example of obtaining the corresponding ROI based on the modified regional 
registration technique. (a) the nipple location (o), the shifted origin ( ), and the mass candidate (m), 
(b) corresponding ROI on the contralateral mammogram.  

n
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(a) (b) 

  
(c) (d) 

Figure 6.  (a) Mammogram containing a mass marked by the rectangular box.  (b) A contralateral 
mammogram of (a) and the rectangular box is the corresponding ROI of the mass in (a) estimated 
by the automated regional registration technique.  (c) ROI extracted from (a) containing a mass 
detected at the prescreening stage but excluded at the final stage of the unilateral CAD system.  (d) 
The corresponding ROI in the contralateral breast. Bilateral analysis of this ROI pair increased the 
likelihood score of the mass which was then detected as a TP in the bilateral CAD system. 
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(a) (b) 

  
(c) (d) 

Figure 7.  (a) Mammogram and the rectangular ROI containing a mass candidate.  (b) The 
contralateral mammogram of (a) and the rectangular box is the corresponding ROI of the mass 
candidate in (a).  (c) ROI extracted from (a) containing normal tissue detected at the prescreening 
stage and included as an FP at the final stage of the unilateral CAD system.  (d) The corresponding 
ROI in the contralateral breast.  Bilateral analysis of this ROI pair reduced the likelihood score of 
the normal tissue which then became a TN in the bilateral CAD system. 
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(a) (b) 

Figure 8.  (a) Image-based and (b) case-based average test FROC curves from the unilateral and 
the bilateral CAD systems. The FP rates were estimated from detection on mammograms in the 
test subsets with masses. 
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(a) (b) 

Figure 9.  (a) Image-based and (b) case-based average test FROC curves from the unilateral and 
the bilateral CAD systems. The FP rates were estimated from detection on mammograms in the 
no-mass data set.   
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(a) (b) 

Figure 10.  (a) Image-based and (b) case-based average test FROC curves from the unilateral 
and bilateral CAD systems for detection on cases with malignant masses only. The FP rates were 
estimated from in the same data set.  
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(a) (b) 

Figure 11.  (a) Image-based and (b) case-based average test FROC curves from the unilateral 
and bilateral CAD systems for detection on cases with malignant masses only. The FP rates were 
estimated from the no-mass data set. 
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ABSTRACT 
 

An important purpose of a CAD system is that it can serve as a second reader to alert radiologists to subtle cancers that 
may be overlooked.  In this study, we are developing new computer vision techniques to improve the detection 
performance for subtle masses on prior mammograms.  A data set of 159 patients containing 318 current mammograms 
and 402 prior mammograms was collected.  A new technique combining gradient field analysis with Hessian analysis 
was developed to prescreen for mass candidates.  A suspicious structure in each identified location was initially 
segmented by seed-based region growing and then refined by using an active contour method.  Morphological, gray 
level histogram and run-length statistics features were extracted. Rule-based and LDA classifiers were trained to 
differentiate masses from normal tissues.  We randomly divided the data set into two independent sets; one set of 78 
cases for training and the other set of 81 cases for testing.  With our previous CAD system, the case-based sensitivities 
on prior mammograms were 63%, 48% and 32% at 2, 1 and 0.5 FPs/image, respectively.  With the new CAD system, 
the case-based sensitivities were improved to 74%, 56% and 35%, respectively, at the same FP rates.  The difference in 
the FROC curves was statistically significant (p<0.05 by AFROC analysis).  The performances of the two systems for 
detection of masses on current mammograms were comparable.  The results indicated that the new CAD system can 
improve the detection performance for subtle masses without a trade-off in detection of average masses. 
 
Keywords: computer-aided detection, prior mammogram, mass detection, AFROC analysis 
 

1. INTRODUCTION 
 

Breast cancer is one of the leading causes of cancer mortality among women1.  Studies indicate that radiologists do not 
detect all carcinomas that are visible upon retrospective analyses of the images2-8.  Computer-aided diagnosis (CAD) is 
considered to be one of the promising approaches that may improve the sensitivity of mammography9, 10. 
 
An important application of a CAD system is to serve as a second reader to alert radiologists to subtle cancers that may 
be overlooked.  Masses retrospectively seen on prior mammograms represent the difficult cases that are more likely to 
be missed by radiologists.  To study the ability of a CAD system in detecting subtle cancers, one way is to evaluate its 
accuracy in detecting missed cancers on prior mammograms.  Our previous experiences indicate that CAD schemes 
trained with cancers on current images do not perform well in detecting masses seen retrospectively on prior images11.  
In this study, we designed new techniques to improve the detection performance for subtle masses on prior 
mammograms and also evaluated the new CAD system on both prior and current mammograms by comparing with our 
previously developed CAD system12.   

 
2. MATERIALS AND METHODS 

 
2.1 Materials 
 
All mammograms in this study were collected from patient files in the Department of Radiology at the University of 
Michigan with Institutional Review Board (IRB) approval.  The mammograms were digitized with a LUMISYS 85 
laser film scanner with a pixel size of 50µm×50µm and 4096 gray levels.  The scanner was calibrated to have a linear 
relationship between gray levels and optical densities (O.D.) from 0.1 to greater than 3 O.D. units.  The nominal O.D. 
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range of the scanner is 0–4.  The full  resolution mammograms were first smoothed with a 2×2 box filter  and 
subsampled by a factor of 2, resulting in images with a pixel size of 100 µ m×100 µ m.  These images were used for the 
input of our CAD system.  The data set we used in this study contained 159 patients.  Each exam had two 
mammographic views, resulting in a total of  318 current mammograms and 402 prior mammograms.  Forty-two 
patients had two years of prior examinations. All mammograms were obtained before biopsy.  There were 159 biopsy-
proven masses in this data set.  Figures 1 and 2 showed th e histograms of mass sizes and visibility, respectively, for the 
comparison of current and prior masses.  The size of a mass was estimated as its longest diameter seen on the 
mammograms.  The visibility of the masses was rated by an experienced radiologist on a 10-point scale with 1 
representing the most visible masses and 10 the most difficult case relative to the cases seen in clinical practice.  The 
mass size ranged from 3 to 42 mm (mean size: 14.3±8.6 mm on current mammograms and 10.9±6.6 mm on prior 
mammograms) and the visibility ratings extended over the entire range.  For the current mammograms, 140 of the 
masses were visible on both views and 19 visible on only one view.  For the prior mammograms, 100 masses were 
visible on both views and 101 visible only on one view. Therefore, there were 299 visible and 19 invisible masses on 
current mammograms and 301 visible and 101 invisible masses on prior mammograms if the masses were counted 
independently by mammographic view. 

 
Figure 1.  Histogram of the sizes for 299 masse s on current mammograms and 301 masse s on prior in our data set.  

Mass sizes are measured as the longest  dimension of the mass by an experi enced MQSA radiologist.  The size 
of the masses in this data set ranged from 3 to 42 mm. 

 

 
Figure 2.  Histogram of the visibility of the masses in our data set.  The visibility is evaluated on a 10-point rating 

scale with 1 representing the most visible masses and 10 the most difficult case relative to the cases seen in their 
clinical practice.  The masses that were not visible were plotted in the column labeled as “INV”. 
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2.2 Methods 
 
2.2.1 CAD System Overview 
 

 

Figure 3.  Block diagram of a single CAD system for mass detection on mammograms. 
 
 

Our CAD system consists of five processing steps: 1) pre-screening of mass candidates, 2) identification of suspicious 
objects, 3) extraction of morphological and texture features, and 4) classification between the normal and the abnormal 
regions by using rule-based and LDA classifiers.  The block diagram for the CAD system is shown in Figure 3.   

 
For the pre-screening stage, we developed a new prescreening technique in which gradient field analysis was combined 
with Hessian analysis to identify mass candidates.  Both gradient field and Hessian analyses were designed to enhance 
circular structures on mammograms and to suppress the objects with other shapes.  Gradient field analysis used the 
information of gradient field directions and Hessian analysis used the second derivatives by solving for the eigenvalues 
of the Hessian matrix.  After this enhancement filtering, the local maxima within the breast region were identified as 
the mass candidates on each mammogram.  The suspicious structure in each identified location was initially extracted 
by a seed-based region growing method.  An active contour method was then used to further refine the initial 
segmentation.  Morphological, gray level histogram and run-length statistics (RLS) features were extracted from the 
original region of interest (ROI) and the orientation field of the ROI for reduction of FPs.   
 
 
2.2.2 Training and test CAD system 
 
The hold-out method was used for training and testing our CAD system.  We randomly separated the entire data set by 
case into two independent subsets, the training subset including 78 cases with 156 current and 200 prior mammograms 
and the test subset including 81 cases with 162 current and 202 prior mammograms.  The training included selection of 
proper parameters and features for the classifier in the CAD system.  Once the training was completed, the parameters 
and features were fixed for testing.  The new system was trained by using prior mammograms in the training set only.  
The performance of the new system was compared with that of the previous CAD system on the current and prior 
mammograms in the test set.   

 
During training, feature selection with stepwise LDA was employed to obtain the best feature subset and reduce the 
dimensionality of the feature space to design an effective classifier.  The detailed procedure has been described 
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elsewhere13.  Briefly, at each step one feature was entered or removed from the feature pool by analyzing its effect on 
the selection criterion, which was chosen to be the Wilks' lambda in this study.  Since the appropriate threshold values 
for feature entry, feature elimination, and tolerance of feature correlation were unknown, we used an automated simplex 
optimization method to search for the best combination of thresholds in the parameter space.  The simplex algorithm 
used a leave-one-case-out resampling method within the training subset to select features and estimate the weights for 
the LDA classifier.  To have a figure-of-merit to guide feature selection, the test discriminant scores from the left-out 
cases were analyzed using receiver operating characteristic (ROC) methodology.  The accuracy for classification of 
masses and FPs was evaluated as the area under the ROC curve, Az.  In this approach, feature selection was performed 
without the left-out case so that the test performance would be less optimistically biased.  However, the selected feature 
set in each leave-one-case-out cycle could be slightly different because every cycle had one training case different from 
the other cycles.  In order to obtain a single trained classifier to apply to the hold-out test subset, a final stepwise feature 
selection was performed with the best combination of thresholds, found in the simplex optimization procedure, on the 
entire training subset to obtain the final set of features and estimate the weights of the LDA.  Note that the entire 
process of feature selection and classifier weight estimation was performed within the training subset.  The LDA 
classifier with the selected feature set was then fixed and applied to the test subset. 

 
 
2.2.3  Evaluation methods 

 
We used a free-response receiver operating characteristic (FROC) method to assess the overall performance of the CAD 
scheme on this image set.  An FROC curve was obtained by plotting the mass detection sensitivity as a function of FP 
marks per image as the decision threshold on the LDA classifier scores varied.  The detected individual objects were 
compared with the “true” mass locations marked by the experienced radiologist, as described above.  A detected object 
was labeled as TP if the overlap between the bounding box of the detected object and the bounding box of the true mass 
relative to the larger of the two bounding boxes was over 25%.  Otherwise, it would be labeled as FP.  The 25% 
threshold was selected as described in our previous study14.   

 
FROC curves were presented on a per-image and a per-case basis.  For image-based FROC analysis, the mass on each 
mammogram was considered an independent true object; the sensitivity was thus calculated relative to the number of 
visible masses by image, which was 149 and 151, respectively, for the current and prior test subset.  For case-based 
FROC analysis, the same mass imaged on the two-view mammograms was considered to be one true object and 
detection of either or both masses on the two views was considered to be a TP detection; the sensitivity was thus 
calculated relative to the number of masses by case, which was 81 and 90, respectively, for the current and prior test 
subset.  The test FROC curve for a given mass subset was estimated by counting the detected masses on the test mass 
subset for the sensitivity. The FP marker rate was estimated from FPs detected in the same test subset.  The average 
number of FP marks per image produced by the CAD system at a given sensitivity was estimated by counting the 
detected objects in these cases at the corresponding decision threshold.   

 
In order to compare the performance of our CAD systems statistically, we employed the alternative free-response ROC 
(AFROC) method15.  In the AFROC method, the FROC data are first transformed by counting the number of false-
positive images (FPI) instead of the FPs per image.  The LDA score of an FPI is determined by the FP object with the 
highest score on the image regardless of how many lower scores FP objects are made on the same image.  The ROCKIT 
curve fitting software and statistical significance tests for ROC analysis developed by Metz et al. 16 can then be used to 
analyze the AFROC data.   
 

 
 

3. EXPERIMENTAL RESULTS 
 

Figures 4 and 5 showed the image-based and case-based FROC curves for detection of masses on prior mammograms, 
respectively.  The case-based sensitivities for detection of masses on the prior mammograms (typically subtle masses) 
in the test subset were 56%, and 35% at 1 and 0.5 FPs/image by using the new CAD system in comparison to 48%, and 
32% at the same FP rates by using the previous CAD system.  The improvement with the new system on prior 
mammograms was statistically significant (p = 0.036).  When the new system was applied to the detection of masses 
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on the current mammograms (typically average masses) in the test subset, the case-based sensitivities were 77% and 
70% at 1 and 0.5 FPs/image in comparison to 75% and 56% at the same FP rates by using the previous CAD system.  
The difference in the two FROC curves for detection of average masses on current mammograms was not statistically 
different (p = 0.184).  Image-based and case-based FROC curves for detection of masses on current mammograms 
were shown in Figures 6 and 7, respectively. 
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Figure 4.  Image-based test FROC curves on prior 
mammograms. Old CAD: detection by the previous 
CAD system trained on both current and prior 
mammograms. New CAD: detection by the CAD 
system trained on prior mammograms. 

 
Figure 5.  Case-based test FROC curves on prior 

mammograms. Old CAD: detection by the previous 
CAD system trained on both current and prior 
mammograms. New CAD: detection by the CAD 
system trained on prior mammograms. 
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Figure 6.  Image-based test FROC curves on current 
mammograms. Old CAD: detection by the previous 
CAD system trained on both current and prior 
mammograms. New CAD: detection by the CAD 
system trained on prior mammograms. 

 
Figure 7.  Case-based test FROC curves on current 

mammograms. Old CAD: detection by the previous 
CAD system trained on both current and prior 
mammograms. New CAD: detection by the CAD 
system trained on prior mammograms. 

 
 
 
 

Proc. of SPIE Vol. 6514  651405-5



 

 

Table 1.  Estimation of the statistical significance in the difference between the FROC performances of the previous CAD 
system trained on both current and prior mammograms and the proposed CAD system trained on prior mammograms.   

 
A1 (AFROC)  

Current Test Set Prior Test Set 
Old CAD 0.51 0.26 
New CAD 0.50 0.31 

p-value 0.184 0.036 
 
 

4. DISCUSSION AND CONCLUSIONS 
 

In this study, we improved the accuracy of a CAD system for detection of subtle masses on prior mammograms.  A 
new prescreening method was developed to improve the sensitivity of mass detection.  A new mass segmentation 
method that combined a seed-based region growing method with active contour method was also designed.  RLS 
features were extracted from the original ROIs and the newly derived orientation field of the ROIs for FPs reduction. 
Our CAD system can significantly improve the performance of mass detection on prior mammograms without a trade-
off in the detection of masses on current mammograms.  It is expected that the new CAD system can increase the 
overall accuracy for detection of subtle early-stage breast cancers. 
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